

PREFACE

This manual describes the operation and use of the Rockwell Single-Chip FORTH
(RSC-FORTH) system as implemented in the Rockwell R 65F11 (40-pin) and R65F12
(64-pin) FORTH-based one-chip Microcomputers and in the Rockwell R65FR1 FORTH
Development ROM.

NOTICE

Rockwell International does not assume any liabilit y arising out of the application
or use of any products, circuit, or software descri bed herein, neither does it
convey any license under its patent rights nor the patent rights of others.
Rockwell International further reserves the right t o make changes in any products
herein without notice. This document is subject to change without notice.

© Rockwell International Corporation, 1983 All Righ ts Reserved, Printed in
U.S.A.

ii

TABLE OF CONTENTS

Section Title Page

 1 Introduction

 1.1 RSC-FORTH User's Manual Description 1-1
 1.2 Reference Documents 1-3

 2 Functional Description

 2.1 RSC-FORTH Hardware 2-1

 2.1.1 R65F11 and R65F12 Microcomputer s 2-1
 2.1.2 Configuring an R65Fll/R65F12-Ba sed System 2-2

 2.2 RSC-FORTH Software 2-2

 2.2.1 Operating System 2-2
 2.2.2 Application Program Auto-Start 2-5
 2.2.3 Development ROM Startup 2-5
 2.2.4 Bootstrap Program Load 2-5
 2.2.5 Micro Monitor 2-5

 3 FORTH Concepts

 3.1 Features of FORTH 3-1
 3.2 Debugging 3-3

 4 Elementary Operations

 4.1 Simple Arithmetic 4-4

 4.1.1 Examine Stack Contents with .S 4-4
 4.1.2 Print from the Stack using 4-5
 4.1.3 Clearing the Stack 4-6
 4.1.4 Add + and Subtract - 4-7
 4.1.5 Multiply * and Divide / 4-7
 4.1.6 Postfix Notation and Stack Oper ation 4-8
 4.1.7 Decimal and Hexadecimal Number Base 4-9

 4.2 Stack Manipulation 4-10

 4.2.1 DUP , DROP , SWAP and OVER 4-10
 4.2.2 Test and Duplicate with -DUP 4-11
 4.2.3 Delete the Top Stack Item with DROP 4-12
 4.2.4 Rotate Stack Items with ROT 4-12
 4.2.5 Copy a Stack Item with PICK 4-13

 4.3 Memory Operations 4-14

 4.3.1 16-Bit Store ! and Fetch @ 4-14
 4.3.2 8-Bit Store C! and Fetch C@ 4-15

iii

TABLE OF CONTENTS

Section Title Page

 4.3.3 Initializing Memory with ERASE , BLANKS ,
 and FILL 4-15
 4.3.4 Dumping Memory with DUMP 4-16
 4.3.5 Moving a Block of Memory with C MOVE 4-16

 4.4 Defining Your Own Operations 4-17

 4.4.1 Colon-Definition 4-17
 4.4.2 Find a Word in the Dictionary w ith ' 4-18
 4.4.3 Print a Message with ." 4-19
 4.4.4 Commenting 4-19

 4.5 Executing and Compiling using SOURCE 4-20

 4.6 DO LOOPS 4-21

 4.6.1 DO ... LOOP 4-21
 4.6.2 +LOOP 4-23
 4.6.3 LEAVE 4-23

 4.7 Comparison and Logic Operations 4-23

 4.7.1 < , > and « 4-24
 4.7.2 U< , 0< and 0= 4-24
 4.7.3 Logical Operations 4-24

 4.8 Conditional Control Structures 4-25

 4.8.1 IF ... ELSE ... THEN 4-26
 4.8.2 Nesting Control Structures 4-26
 4.8.3 Masking and Setting Bits 4-27
 4.8.4 BEGIN ... Loops 4-28

 4.9 Data Storage 4-29

 4.9.1 Find Next Dictionary location w ith HERE 4-29
 4.9.2 Use PAD for Temporary Storage 4-30
 4.9.3 Increment Memory with +! 4-31
 4.9.4 Exclusive-OR Memory Using TOGGL E 4-32

 4.10 Constants and Variables 4-33

 4.10.1 CONSTANT 4-33
 4.10.2 VARIABLE 4-33
 4.10.3 Defining Words 4-34
 4.10.4 USER 4-34
 4.10.5 ALLOT 4-35

iv

TABLE OFCONTENTS

Section Title Page

 4.11 Changing the Number BASE 4-36

 4.12 Output Words 4-37

 4.12.1 Print Right-Justified with .R 4-37
 4.12.1 Output Spaces with SPACE and S PACES 4-50
 4.12.3 Output a Character with EMIT 4-37
 4.12.4 Output a String with TYPE 4-38
 4.12.5 Prepare to Output a String wit h COUNT 4-38

 4.13 Input Words 4-39

 4.13.1 Input a Character with KEY 4-39
 4.13.2 Input a String with EXPECT 4-40
 4.13.3 Test for Input with ?TERMINAL 4-41

 5 Advanced Operations

 5.1 Other Single-Precision Arithmetic Oper ations 5-1

 5.1.1 Modulus Operators MOD and /MOD 5-1
 5.1.2 Absolute ABS and Negate NEGATE 5-1
 5.1.3 Simple Increment and Decrement 1+ , 2+ ,
 1- , 2- 5-1
 5.1.4 Minimum MIN and Maximum MAX 5-2

 5.2 Unsigned, Mixed and Double-Precision A rithmetic 5-2

 5.2.1 Entering Double-Precision Numbe rs 5-3
 5.2.2 Printing Double-Precision Numbe rs 5-3
 5.2.3 Other 32-Bit FORTH Operators 5-4
 5.2.4 Unsigned Compare U< 5-5
 5.2.5 Unsigned Multiply U* and Divide U/ 5-5
 5.2.6 Mixed Mode Operations M* , M/ , and M/MOD 5-6
 5.2.7 Scaling 5-6

 5.3 Output Formatting 5-7

 5.3.1 S->D , <# , #S , SIGN , and #> 5-7
 5.3.2 # and HOLD 5-8

 5.4 Strings 5-9

 5.4.1 Address String Data with COUNT 5-9
 5.4.2 Output String Data with TYPE 5-9
 5.4.3 Input String Data with EXPECT 5-10
 5.4.4 Suppress Trailing Blanks with - TRAILING 5-10
 5.4.5 Interpret a Number with (NUMBER) 5-10
 5.4.6 Input a Number with NUMBER 5-11

v

TABLE OF CONTENTS

Section Title Page

 5.5 Dictionary Structure 5-11

 5.5.1 FORTH Word Structure 5-11
 5.5.2 Handling FORTH Word Addresses 5-14
 5.5.3 FORTH Word Handling Examples 5-14

 5.6 Vocabularies 5-15

 5.6.1 More on VLIST 5-15
 5.6.2 CONTEXT and CURRENT Specify Voc abularies 5-16
 5.6.3 Use LATEST and HERE to Check Di rectory 5-16
 5.6.4 Application Libraries 5-17

 5.7 Immediate Words 5-18

 5.8 Creating Your Own Data/Operation Types 5-19

 6 SPECIAL OPERATIONS

 6.1 System Constants 6-1

 6.2 Defining Words 6-2

 6.2.1 Creating Address Constants with C.CON 6-2
 6.2.2 Selecting Words with CASE: 6-2

 6.3 Target Compilation/Dictionary Control 6-3

 6.3.1 Headerless Code Generating 6-4
 6.3.2 Target Compilation with H/C 6-4
 6.3.3 Codes Versus Heads Dictionary W ords 6-6
 6.3.4 Move a Definition from Codes to Heads with
 HWORD 6-7
 6.3.5 Preparing for Autostart 6-7

 6.4 Disk Interfacing 6-8

 6.4.1 High Level Mass Storage Words 6-8
 6.4.2 Disk System Variables 6-9

 6.5 General Utilities 6-9

 6.5.1 Formatting a Disk 6-9
 6.5.2 Screen Modification 6-10
 6.5.3 Dumping a Memory Block 6-10
 6.5.4 Using EEC! to Program a PROM 6-11
 6.5.5 Bank Switching 6-12
 6.5.6 Specifying Top of Memory 6-13

vi

TABLE OF CONTENTS

Section Title Page

 7 RSC-FORTH ASSEMBLER

 7.1 The Assembly Process 7-1

 7.1.1 CODE Definitions 7-3
 7.1.2 Assembly-Time Versus Run-Time 7-3
 7.1.3 CODE-Definition Example 7-3

 7.2 Assembler Op-codes 7-4

 7.2.1 Single Mode Op-Codes 7-5
 7.2.2 Multi-Mode Op-Codes 7-6

 7.3 Addressing Modes 7-5

 7.4 R6502 Conventions 7-6

 7.4.1 Stack Addressing 7-6
 7.4.2 Return Stack 7-7

 7.5 FORTH Registers 7-8

 7.5.1 Assembly Registers 7-8
 7.5.2 CPU Registers 7-9
 7.5.3 XSAVE 7-9
 7.5.4 N Area 7-9
 7.5.5 SETUP 7-10

 7.6 Control Flow 7-10

 7.6.1 Conditional Looping 7-11
 7.6.2 Conditional Execution 7-12
 7.6.3 Conditional Nesting 7-13
 7.6.4 Some Nesting Examples 7-14

 7.7 Return of Control 7-17

 7.8 Assembler Security 7-18

 7.8.1 Assembler Tests 7-18
 7.8.2 Bypassing Security 7-18

 7.9 Adding Assembly Code to Defining Word 7-19

vii

TABLE OF CONTENTS

Section Title Page

 8 Handling Interrupts in FORTH

 8.1 Types of Interrupt Handlers 8-1

 8.2 Machine Level Interrupt Handling 8-1

 8.2.1 CODE-Definition Form 8-5
 8.2.2 Code Fragment Form 8-5

 8.3 Interpretive Interrupt Handling 8-6

 8.3.1 Interrupt Service Subroutine 8-6
 8.3.2 Interrupt Processing Word 8-6
 8.3.3 Example 8-7
 8.3.4 Points to Remember 8-8

 9 Programming the R65F11 I/O in FORTH

 9.1 Parallel I/O 9-1

 9.2 Serial I/O 9-9

 9.3 Counter Timers 9-11

 9.3.1 Counter A 9-11
 9.3.2 Counters 9-16

 10 Notes on Style and Program Development

 10.1 General 10-1

 10.2 Example Program 10-1

 11 Preparing an Application Program for PROM I nstallation ... 11-1

 11.1 Program Development 11-1

 12 Interfacing to Mass Storage 12-1

 12.1 Overview 12-1

 12.1.1 Mass Storage Terminology 12-1
 12.1.2 Buffer Variables 12-3

 12.2 Setting up Block and Data Buffers 12-3

viii

TABLE OF CONTENTS

Section Title Page

 12.3 Using Mass Storage 12-5

 12.3.1 Data Storage and Retrieval-the Virtual RAM .. 12-5
 12.3.2 Program Loading and Overlays 12-6

 12.4 Source Code Editings 12-7

APPENDIX A RSC-FORTH Functional Summary A-l
APPENDIX B RSC-FORTH Glossary B-l
APPENDIX C RSC-FORTH Assembler Functional Sum mary C-l
APPENDIX D RSC-FORTH Assembler Glossary D-l
APPENDIX E Error Messages and Recovery E-l
 E.l Standard Error Message E-1
 E.2 Standard Error Message Word E-2
 E.3 RSC-FORTH Error Definitions E-2
 E.4 Disk Errors E-6
APPENDIX F Page Zero Memory Map F-l
APPENDIX G USER Variables RAM Map G-l
APPENDIX H ASCII Character Set H-l
APPENDIX I FORTH String Words I-1
APPENDIX J USER 24-Hour Clock Program in FORT H J-l
APPENDIX K Utility Examples K-l
APPENDIX L RSC-FORTH Versus FIG-FORTH L-l
APPENDIX M RSC-FORTH Floppy Disk Interface M-l
APPENDIX N RSC-FORTH Screen Numbers Versus Tr ack
 Numbers N-l
APPENDIX 0 Editor 0-1
APPENDIX P Selected Bibliography P-l

ix

LIST OF FIGURES

Figure Title Page

2-1 RSC-FORTH Memory Map 2-3
2-2 Typical RS65F11 Microcomputer Minimu m Hookup
 with R65FR1 Development ROM 2-4
2-3 Auto-Start ROM Code Example 2-6
4-1 VLIST of RSC-FORTH Words 4-2
4-2 Stack Diagram of Postfix Example 4-9
7-1 VLIST of RSC-FORTH Assembler Words 7-2
8-1 Machine Level NMI Interrupt Handling 8-2
8-2 Machine Level IRQ Interrupt Handling 8-3
8-3 Interpretive Interrupt Handling 8-4
9-1 R65F11 and R65F12 Interface Diagram 9-2
9-2 Register Bit Assignments 9-4
9-3 RES Initialization of I/O Ports and Registers 9-6
9-4 Serial Communication Bit Allocations 9-10
9-5 Interval Timer Timing Diagram 9-13
9-6 Event Counter Mode 9-15
9-7 Pulse Width Measurement 9-15
9-8 Counter B Retriggerable Interval Tim er Mode 9-18
9-9 Counter B Pulse Generation 9-18
J-l 24-Hour Clock Program Using a Machin e Level
 Interrupt Handler J-3
J-2 24-Hour Clock Program Using an Inter pretive
 Interrupt Handler J-4

x

 ���������	
�����	
	
	

���������	�
�� 	
										 	
���	���������	�������	
��	��
���	���������	��	����	 ����� 	��	���������	��		
���	!� �"��#	$����%	
	
							�&��

	�����	'�������$����					��

((�

	��	 �

((�
)*	
	'�+�	
	
										 ��	
	
							�&��
,	�����	'�������$����					��
,((�

*	
' �+�	
	
										 ���		
	
							�&���
	-�.� �$����	��'								��,/�,�
,*	
'� +�	
	
	

�����	��	����	.������	���	��	���������	��	!� �"�% 	
							
�	�-'0		 ��.��	�"�	����!����	�1���	��	���	� ���2�						
										 					����!���	���	"���	��%	
										 											%	�-'0	�-'0	,-��0	3	
							,�	���'��		��	���$�����.��	
										 					����!���	���	"���	��%	
										 											%	���'��	,	4	�5�0	(-�	-60	
7	 �
8
��	9	�

:	
	9	�'��:	-60	
										 													�
8
��	(9	�'��:	8��0	-��0	3 	
							;�	9�<�
�		�������	���	.� ��	!��	9=��
�	�	
										 					����!���	���	"���	��%		
										 											�
>		
										 											%	9�<�
�	(()(3	
)�	9		��������	�	��!������	��	���	-�.� �$��� �	��'	���	���	���	��	����		
										 					��	������� ���	�����	
										 							�� �����	��	��	���		�		��������	
							��	=��		��������	�	��!������	��	���	-�.� �$� ���	��'	���	���	���	��		
										 					����	��	������� ���	�����	
										 							�� �����	��	��	���		(?		��������	
							&�	��
��
		���	��	�����	"����	���	�����	���	 ���	�!	�	"���	��	������ �		
										 					�	$�#�	�������1*	"����	��	��	�����	� ��������	!��	���	&�(,	�06�	
										 							�� �����	��	��	����	�	���$�����	"� ��	"���%	
										 											�
>	@	=�'
	���	�	
										 							���	.���!1	����	���	�������	��	��� 	A>>��A�	9!	���	�������	��		
										 							A>>��A	���	"���	���� �	��	!��#���� �	���	�	A
	�88��A	��������		
										 							��!���	����!����#	���	"����	
	
	
	
	

B�	

���������	�
�& 	
	
���������	�
�&	��������	���		�-'0		���		���'��		��� ���	���������	���.�	��		
�
���		���������	�
�&	��	��$ �������	��	��'	��.���� 	!��	���	"���	������	���		
�&�(
<	��	�&�

<	��'� ���	��������$�����	���	�&��:; 	��	���	:���� 	��'	����		
�$������	��	���C�������	"���	���	�&�(
<	��	�&�

<	� ��	!��������	 �2�	���		
�&��

	��	�&��
,	�����	��������$����	�"���	������� 	��'��	���	�&���;		
-�.� �$����	��'	�$������	"���	���	�&�(
<D�&�

<	��� �����$����	���	�&��:;		
:���� 	��'	��	�	���� ��	������	��	���	�&���
	-�.� � $����	��'	�$������	"���		
���	�&��

D�&��
,	�����	'�������$�����	�����	$����	 ���	������!���	��%	
	
							�&��:;	:���� 	��'						 ��;,E��

*	
	��	,	'�+ �	
	
										 ���		
	
							�&���;	-�.� �$����	��'	��,/�;�

*	
	��	,	'�+ �	
	
���������	�
�E 	
	
���������	�
�E	��������	� 	���	������	���������	�� �.�	��	�
���	
	
���������	�
�E	��	��$ �������	��	���	!� �"��#	$��� �%	
	
							�&��

	�����	'�������$����	��

((�
�*	
	'�+	 ��	�

((�
&*	,	'�+�	
	
										 ��		
	
							�&��
,	�����	'�������$����	��
,((�
;*	
	'�+	 ��	�
,((�
)*	,	'�+�	
	
										 ���		
	
							�&���
	-�.� �$����	��'	��,/�,�
;*	
	��	,	'�+ �	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

B��	

SECTION 1

INTRODUCTION

FORTH is a unique programming system that is well s uited to a variety of
applications. Because it was originally developed f or real-time control
applications, FORTH has features that make it ideal for machine and process
control, data acquisition, energy and environmental management, automatic
testing, and other similar applications. The speed performance of assembly
language is required in many of these applications, however a high-level
language is often desired to improve program develo pment productivity and
program reliability. FORTH is designed to satisfy b oth speed and programming
efficiency requirements.

FORTH can be called a computer language, an operati ng system, an interactive
compiler, a data structure, or an interpreter, depe nding upon your point of
view. It was designed to combine the strengths of both compilers and
interpreters. The result is a unique language base d on pre-defined operations
that minimizes software development time and costs, supports structured
programming and program modularity, compiles intera ctively to ease debugging and
to reduce programming errors, compacts into small o bject code, and executes
extremely fast. Additional words may be defined to allow usage by
non-programmers.

When all of the features of the FORTH language are combined with the utility
of the RSC-FORTH single-chip microcomputer hardware , the result is a powerful
tool for the dedicated computer system designer. Ma ny extensions have been added
to RSC-FORTH that allow a very low cost, few chip s ystem to be both the
development system and the final target system.

1.1 RSC-FORTH USER'S MANUAL DESCRIPTION

This manual is designed to provide both introductor y instruction and detail
language reference information. If you are new to F ORTH, be sure to read and
follow the manual chapter-by-chapter using a system which includes the R65F11 or
R65F12 microcomputer, and the R65FR1 FORTH Developm ent ROM as a teaching
aid in order to learn the FORTH language and operat ion concepts. If you
already know the FORTH language you can probably sk ip certain sections and
still use the language, however it is recommended t o review all sections to
become familiar with the RSC-FORTH mechanization an d unique features.

Section 1, Introduction, introduces the RSC-FORTH l anguage and the RSC-FORTH
User's Manual.

Section 2, Functional Description, explains the har dware of the RSC-FORTH system
and how a RSC-FORTH system can be constructed.

Section 3, FORTH Concepts, provides a general overv iew into FORTH concepts and
advantages. This is a good chapter to read if you a re new to FORTH.

Section 4, Elementary Operations, leads you through elementary and common
FORTH operations. By following this section step-b y-step you will learn how
FORTH operates to a sufficient level to implement s imple applications in FORTH.

1-1

Section 5, Advanced Operations, takes you into more complex FORTH operations
once you have become familiar with the elementary F ORTH operations described
in Section 4.

Section 6, Special Operations, details the unique f eatures of RSC-FORTH, not
found in other FORTH systems, designed to ease deve lopment in a single-chip
microcomputer system.

Section 7, RSC-FORTH Assembler, describes concepts and operating procedures
associated with the RSC-FORTH Assembler.

Section 8, Handling Interrupts in FORTH, explains h ow to use machine level and
interpretive interrupts in FORTH.

Section 9, Programming the R65F11 I/O, explains how to use FORTH to program
the R65F11 input/output section. These techniques c an be used directly with
the R6511 and can easily be applied to other periph eral devices.

Section 10, Notes on Style and Program Development, discusses the general
approach to programming in FORTH and provides an ex ample program.

Section 11, Preparing an Application Program for PR OM Installation, tells how to
structure and locate a FORTH application program in a PROM which will operate in
conjunction with the R65F11 and R65F12 FORTH-based microcomputers.

Section 12, Interfacing to Mass Storage, tells how to prepare programs to
store and retrieve program and data from mass stora ge. Blocks, screens, and
buffers are described. The technique to handle prog ram overlays is also
explained.

Appendix A, RSC-FORTH Functional Summary, summarize s FORTH word operation by
general area of usage.

Appendix B, RSC-FORTH Glossary, defines each FORTH word in ASCII sort order.

Appendix C, RSC-FORTH Assembler Functional Summary, summarizes FORTH assembler
word operation by area of usage.

Appendix D, RSC-FORTH Assembler Glossary, defines e ach FORTH Assembler word in
ASCII sort order.

Appendix E, Error Messages and Recovery, identifies each FORTH error number
and/or message, defines the error meaning, and desc ribes the recovery action.

Appendix F, Page Zero Memory Map, defines the addre ss, variable name and general
usage of page zero parameters.

Appendix G, User Variables RAM Map, defines the add ress, variable name and
purpose of each user variable. The cold and warm st art initialization values are
also listed.

Appendix H, ASCII Character Set, provides a list of 7-bit ASCII codes in decimal
and hexadecimal corresponding to 32 control functio ns and the 96 upper and lower
case alphabetic, numeric and special characters.

1-2

Appendix I, FORTH String Handling Words, describes how to create string handling
functions in FORTH.

Appendix J, User 24-Hour Clock Program in FORTH, il lustrates a program written
in FORTH colon- and CODE-definitions, i.e., FORTH h igh-level words and 6500
assembly language.

Appendix K, Utility Functions, explains how to dete rmine the time it takes for a
FORTH word to execute.

Appendix L, RSC-FORTH Versus FIG-FORTH, identifies words incorporated in each
FORTH that are not included in the other FORTH.

Appendix M, Selected Bibliography, lists references to many popular and tutorial
FORTH articles and books.

1.2 REFERENCE DOCUMENTS

 Rockwell

 29650N30 R6500 Programming Manual
 Order No. 202

 29650N31 R6500 Hardware Manual
 Order No. 201

 29651N49 R65F11 and R65F12 FORTH Based
 Order No. 2146 Microcomputer Product De scription

 29651N59 RSC-FORTH Reference Card
 Order No. 2156

 29651N65 Application Note; A Low- cost
 Order No. 2162 Development Module for t he
 R65F11 FORTH Microcompu ter

1-3

This page is intentionally left blank.

1-4

SECTION 2

FUNCTIONAL DESCRIPTION

The RSC-FORTH system integrates a complete ROM-base d FORTH system consisting of
microprocessor, memory and peripheral hardware elem ents and RSC-FORTH software
into a single-chip microcomputer for runtime applic ations and a two-chip set for
application software development. The RSC-FORTH so ftware includes a Software
Kernel, comprised of an RSC-FORTH Operating System and runtime portions of the
RSC-FORTH language, which is masked into ROM in the one-chip microcomputer. Two
versions of this microcomputer are available: the R 65F11 and R65F12. Each
version has the same Software Kernel but different input/output capabilities.
The other portions of the RSC-FORTH software, not r equired at runtime, are
provided in a separate and supporting R65FR1 Develo pment ROM for use during
application program development. The hardware eleme nts of the microcomputer and
the features of the operating system are presented first so the interaction with
the runtime and development portions of the RSC-FOR TH language can be fully
understood.

2.1 RSC-FORTH HARDWARE

2.1.1 R65F11 and R65F12 Microcomputers

The Rockwell R65F11 and R65F12 are complete, high-p erformance, 8-bit NMOS single
chip microcomputers, and are compatible with all me mbers of the R6500 family .

The R65F11 and R65F12 consist of an enhanced R6502 CPU, an internal clock
oscillator, 3K-bytes of masked Read-Only Memory (RO M), 192 bytes of Random
Access Memory (RAM), and versatile interface circui try. The interface circuitry
includes two 16-bit programmable timer/counters, 16 bi-directional input/output
lines (including four edge-sensitive lines and inpu t latching on one 8-bit
port), a full-duplex serial I/O channel, ten interr upts and bus expandability .

The innovative architecture and the demonstrated hi gh performance of the R6502
CPU, as well as instruction simplicity, results in system cost-effectiveness and
a wide range of computational power. These features in combination with the RSC-
FORTH high level operating system make the R65F11 a nd R65F12 ideal for
microcomputer applications.

The R65F11, with its two 8-bit ports, is housed in a 40-pin DIP. For systems
requiring additional I/O ports, the 64-pin QUIP ver sion, the R65F12, provides
three additional 8-bit ports.

The kernel of the high level Rockwell Single Chip F ORTH (RSC-FORTH) language is
contained in the preprogrammed ROM of the R65F11 an d R65F12. RSC-FORTH is based
on the popular fig-FORTH model with extensions. All of the runtime functions of
RSC-FORTH are contained in the ROM, including 16- a nd 32-bit mathematical,
logical and stack manipulation, plus memory and inp ut/output operators. The
RSC-FORTH Operating System allows an external user program

2-1

written in RSC-FORTH or Assembly Language to be exe cuted from external EPROM, or
development of such a program under the control of the R65FR1 RSC-FORTH
Development ROM.

2.1.2 Configuring an R65Fll/R65F12-Based System

There are several ways to configure an R65F11 or R6 5F12-based system. A minimum
system includes the R65F11 or R65F12 microcomputer, a crystal, application
program in PROM/ROM and application input/output in terface. Such a system can
be expanded in memory up to the 16K address limit o f the R65F11/R65F12. The
R65F1 Development ROM may be included in any RSC-FO RTH system by providing
proper decoding logic.

There are two basic configurations of RSC-FORTH bas ed systems:

a. Using an R65F11. An external addressing space of 16K bytes is possible
 with the use of an eight-bit latch. The R65FR1 (at address $2000-$3FFF)
 may be used as a development ROM. Two I/O Ports (A & B) are available to
 the user.

b. Using an R65F12. Five I/O ports (A, B, E, F and G) are available to the
 user. All other comments are the same as for th e R65F11.

Additional ROM, RAM and I/O devices can be added to the external memory map as
desired. Figure 2-1 shows a RSC-FORTH memory map. F igure 2-2 shows a typical
maximum electrical hook-up for an R65F11 system wit h and R65FR1 Development ROM
and RS-232C serial interface for connection to a CR T/keyboard terminal. Wiring
for an R65F12 system would be almost identical.

2.2 RSC-FORTH SOFTWARE

2.2.1 Operating System

Much of the philosophy needed to build a RSC-FORTH microcomputer system can be
understood by looking at the RSC-FORTH operating sy stem.

Many cost effective, eight-bit memory devices are a vailable to the system
designer today. These ROMs, RAMs, EPROMs and EEROMs usually come in multiples of
1K-byte increments. The most popular are the 2K-byt e versions such as the 2016,
6116 and similar RAM devices and the 2716 type EPRO Ms. The RSC-FORTH Operating
System is designed to work with these memory produc ts.
The purpose of an operating system is to initiate o peration in an orderly manner
during power on or reset, the (loading and) startin g of user functions and
allocation of system resources. The RSC-FORTH Opera ting System provides these
and many other services. Since the RSC-FORTH system is designed to serve in a
dedicated application, the operating system's uniqu e power up procedures are
most interesting.

Upon reset, the reset vector in the kernel ROM dire cts processor execution to a
section of machine code in the FORTH word COLD . Th is initializes the
microcomputer for operation. Register values are es tablished and interrupt
sources disabled. The serial channel of the microco mputer is set up for 1200

2-2

baud asynchronous transmission (assuming a 1 MHz in ternal clock) with seven data
bits, no parity, and two stop bits. System variabl es including pointers that
make the serial channel the system method of input/ output are down-loaded from
ROM to zero page in RAM for read/write operation.

A test is made to determine the reset status. If a user variable, CLD/WRM , in
memory location $030E, contains a value other than $A55A, a cold reset is
assumed. In this case, the low level IRQ vector (I RQVEC), the low level NMI
vector (NMIVEC), and the high level interrupt vecto r (INTVEC) are forced to
point to the system reset routine. This prevents an unintentionally generated
interrupt from crashing the system. System variable s TIB , RO , SO ,
UC/L , UPAD , UR/W and BASE are also initialized to their default values. If a
warm start is detected, only TIB , RO and SO are re set to default values (The
meanings of these variables are described in Append ix A).

2.2.2 Application Program Auto-Start

Whether a warm or cold reset, the memory map is the n examined at every 1K-byte
boundary starting at location $0400, i.e. $0400, $0 500, $0600, etc., through
$3F00. The first two bytes at each boundary are com pared to an $A55A bit
pattern. This pattern indicates an auto-start ROM is installed. If the auto-
start pattern is present, the next two bytes must p oint to the Parameter Field
of a high level RSC-FORTH word to be executed upon reset. Assembly language
routines can also be autostarted by using a series of indirect pointers.
Details on auto-start ROM patterns are shown in Fig ure 2-3.

2.2.3 Development ROM Startup

The R65FR1 Development ROM is an example of an auto -start ROM. If there is no
other auto-start pattern lower in the memory map, w hen the operating system
finds the R65FR1 Development ROM, the familiar star t up of the RSC-FORTH will
occur and the message

 RSC-FORTH VI.5

is displayed. FORTH words can now be entered inter actively (see Section 3.1).

2.2.4 Bootstrap Program Load

If no development ROM is found, the message "NO ROM " is issued by the operating
system. Providing no interruption from the operator at that point, the RSC-FORTH
System attempts to load a bootstrap program from fl oppy disk. The first 128
bytes of Track 0 Sector 1 is loaded into RAM starti ng at address $005F. After
loading, execution is turned over to the boot progr am at $005F.
The boot program can be any machine code program th at will fit in 128 bytes.
Clever programmers will even be able to restart FOR TH (since it was a FORTH word
that called the boot) and execute a high level boot .

2.2.5 Micro Monitor

When the system issues the "NO ROM" message, before actually calling the boot
program, the serial input channel is checked for a CNTL R character ($12).
Normally, as the microcomputer powers up, the conte nts of the serial input

2-5

Figure 2-3. Auto-Start ROM Code Example

register will be some other value, thus boot from f loppy disk will be initiated.
If a CNTL R key combination is received from the se rial input channel then RESET
pressed, a program called the "Micro Monitor" is en tered. The Micro Monitor is
completely self-contained in the kernel. The microc omputer with the kernel
requires only RAM from address $0300 through $3FF t o run the Micro Monitor. The
external RAM is required for FORTH user variables, PAD and the Terminal Input
Buffer (TIB).

The Micro Monitor outputs a "greater than" sign, "> ", to the system terminal at
the beginning of a new line then waits for an input line from the operator. The
Micro Monitor is actually a very simple FORTH inter preter. Much like the full
FORTH interpreter, the Micro Monitor allows the ope rator to enter FORTH words to
be executed and numbers to be placed on the stack. Since it is stand alone and
operates without the aid of a development ROM, FORT H words must be referenced by
their Parameter Field Addresses, rather than their name. The way words and
numbers are distinguished by the Micro Monitor is b y the first character in the
input stream on the line. If that character is an " N", it is processed as a
number and placed on the data stack. If the charact er is a "W", the entry is
considered to be a FORTH word which is immediately executed. The characters
following the first character must be hex digits. T he line entry is terminated
with a carriage return. Only one entry, i.e., numbe r or FORTH word, can be made
per line.

Entry into the Micro Monitor can also be gained by executing the FORTH word MON
from the R65FR1 Development ROM. As an example of t he use of Micro Monitor, the
following sequence shows the entry of two numbers, their addition, and the
outputting of the results. The Micro Monitor was en tered by either sending CNTL
R then pressing RESET without an auto-start ROM in the system, or by commanding
MON in the development system.

2-6

 >N1111 (The > indicates the Micro Monitor is ready)
 (for input. The N1111 entered by t he operator)
 (puts a $1111 on the data stack.)

 >N222 (The Micro Monitor returns the > a fter the)
 (last command is finished. The op erator)
 (enters the second number, $0222.)

 >WF778 (The W entered by the operator ind icates the)
 (following number is a FORTH word to be exe-)
 (cuted. The address $F778 is the Parameter)
 (Field Address of the FORTH word + . The)
 (Micro Monitor causes the two numb ers to be)
 (added therefore and the result le ft on the)
 (stack.)

 >WFEE4 1333 (The operator enters another FORTH word to)
 (be executed. This one is the . c ommand)
 (which outputs the top value from the data)
 (stack. The outputted result is d isplayed)
 (on the same line. After command c ompletion)
 (the Micro Monitor displays the > , to)
 (indicate that it is ready for ano ther input.)

A list of all the available FORTH words available i n the kernel with their
Parameter Field Addresses are listed in Table 2-1. There are many useful words
that can be accessed by the user with the Micro Mon itor. It is possible to
examine I/O ports, load programs from disk and even program EPROMs under
direction of the Micro Monitor. It should be easy t o imagine many uses for the
Micro Monitor when making field modifications to ex isting products based on RSC-
FORTH.

2-7

Table 2-1. RSC-FORTH Kernel Words with their
Parameter Field Addresses

 __ _______________
� ! F858 � 2DUP F7EF � D+- FC42 � MOD FCD4 �
� # FE7D � 3 F8BB � D. FECE � NEGATE F7A5 �
� #> FE5C � 4 F8BF � D.R FEB0 � OR F6CE �
� #S FEA0 � ;S F717 � DABS FC56 � OVER F7C5 �
� (+LOOP) F4D0 � < F954 � DECIMAL F9BC � PAD F8F0 �
� (.") FA31 � <# FE52 � DIGIT F50D � PICK������� F98F�
� (DO) F4F8 � = F938 � DISK FD08 � QUERY FAAC �
� (FIND) F535 � > F96C � DNEGATE F7B5 � R F73F �
� (LOOP) F4AF � >R F734 � DPL F8E2 � R> F73F � �
� <NUMBER) FB06 � ? FEEC � DREAD F056 � RP! ��������� F6FD�
� * FCB6 � ?TERMINAL F60A � DROP F7CF � RP@ F80C �
� */ FCE8 � @ F83B � DUP F7E5 � R0 F8CD �
� */MOD FCDC � ABS FC4E � DWRITE FDBE � ROT F974 �
� + F778 � AND F6BE � EEC! FEF4 � S->D FC2C �
� +! F818 � BANKC! FF42 � EMIT F5D4 � S0 F8CA �
� +- FC36 � BANKC@ FF4A � ENCLOSE F591 � SEEK FE11 �
� - F96C � BANKEEC! FF52 � ERASE FAE4 � SELECT FD43 �
� -DUP F9A5 � BANKEXECUTE FF5A� EXECUTE F471 � SIGN FE6C �
� -TRAILING FA0B � BASE F8D9 � EXPECT FA45 � SP! F6F3 �
� . FEE4 � BL F8C3 � FILL FABE � SP@ F6EA �
� .R FED8 � BLANKS FAEC � HEX F9B1 � SPACE F99D �
� / FCCA � BOUNDS F803 � HLD F8E5 � SPACES FE3A �
� /MOD FCBE � BRANCH F480 � HOLD FAF4 � SWAP F7D3 �
� 0 F8AF � C! F868 � IN F8DF � TIB F8C7 �
� 0< F76B � C/L F8E8 � INIT FDF1 � TOGGLE F830 �
� 0= F7A5 � C@ F84B � KEY F5F6 � TYPE F93F �
� 0BRANCH F497 � CLD/WRM F8DC � LEAVE F722 � U* F646 �
� 1 F8B3 � CLIT F458 � LIT F40E � U/ F67B �
� 1+ F8F8 � CMOVE F626 � M* FC7E � U< F940 �
� 1- F913 � COLD FB48 � M/ FC94 � UC/L F8D0 �
� 2 F8B7 � COUNT F9E3 � M/MOD FCF2 � UPAD F8D3 �
� 2+ F820 � CR F613 � MAX FC6E � UR/W F8D6 �
� 2- F920 � D+ F787 � MIN FC5E � XOR F6DC �
� 2DROP F7D1 ������������������ � ��

2-8

SECTION 3

FORTH CONCEPTS

FORTH is quite different from more conventional lan guages such as BASIC,
FORTRAN, or Pascal. It creates a computing environ ment with unique strengths,
tools, and styles. Some of the structures of FORTH have little correspondence
with those of other languages. This overview of th e language and the RSC-FORTH
implementation provides background for the how-to-d o-it chapters which follow.

3.1 FEATURES OF FORTH

FORTH is EXTENSIBLE, meaning that you add your own operations to the language.
New words (operations) are defined in terms of prev iously defined words (or
assembly language), until a single word represents the entire user's program.
The program word can then be executed by typing its name or made to auto-start
upon reset. Except that your words may be defined i n RAM, (or user provided PROM
or ROM), there is no distinction between your new o perations and those
originally part of the language. Extensibility allo ws users to define libraries
or even their own languages for particular applicat ions-, greatly facilitating
maintenance as requirements change.

FORTH keeps all definitions in a DICTIONARY. The d ictionary includes virtually
all the object code of the system itself and of you r applications. Your own data
structures may be in the dictionary or outside it, at your option. The internal
structure of the dictionary is uniform and much sim pler than the internals of
most other languages; therefore, application progra mmers typically learn much
more of the inner workings of the FORTH system.

Compiled FORTH code is extremely COMPACT in memory, even compared to machine
language. The overhead associated with most FORTH s ystems is nearly non-existent
in RSC-FORTH. Since the runtime portions of RSC-FO RTH are in internal ROM,
there is no kernel to add to the user's code. RSC-F ORTH can target compile user
code and remove all the overhead of the dictionary structures. By referring to
the internal runtime kernel and user defined functi on, RSC-FORTH's hierarchical
structure allows application code to build on itsel f, increasing the memory
advantage for larger programs, and with little loss in speed.

FORTH code is recursive, suited to multi-tasking ap plications, and can be
programmed in RAM, PROM or ROM.

FORTH is STRUCTURED. There is no GOTO statement in the language. IF and ELSE
control structures, and DO, UNTIL, and WHILE loops are provided; all of these
can be nested to any practical depth.

FORTH uses a STACK and its associated POSTFIX NOTAT ION, also called Reverse
Polish Notation (RPN), in which the operation codes are written after the
operands which they use. For example, <2+2> in BASI C would be written <2 2 +> in
FORTH. Why does FORTH use a stack explicitly when m ost other languages hide
their stacks from the user and avoid postfix in fav or of more conventional
notation?

3-1

Part of the answer is that the stack allows very lo w overhead for linking
between subroutines. FORTH reduces the cost of subr outines to very little, and
the whole language is built around subroutine calls . Routines can accept and
return any number of arguments, without the complex ity or other overhead of
formal parameter or local variable declarations.

The stack encourages extremely MODULAR programming, which can be debugged with
great reliability. Consider FORTH's programming env ironment. Each module (i.e.,
word or procedure) has only one entry and one exit point. Usually all
communication with the outside world is through the stack, so there are no side
effects on other modules, variables, etc., unless e xplicitly programmed. Usually
each module is short; commonly three to five lines. The smaller a module is, the
easier it is to test all paths through it.

FORTH is INTERACTIVE. Testing is immediate, becaus e almost all FORTH words can
be executed directly as commands from the keyboard, and will behave exactly the
same in this mode as when compiled into later defin itions. Any arguments
required can simply be typed onto the stack before the test, or generated by
other operations, and results can be observed or pr inted immediately. Usually
each component of the new definition can also be ex ecuted interactively from the
keyboard, to aid in debugging.

FORTH debugging seldom requires examining any code except the single definition
being tested. Documentation of the behavior of the defined words in glossary
form is required, i.e., inputs, outputs, and action s, but there is no need for
their code to be listed. Fewer listings are therefo re required during FORTH
program development than with other languages. Ever ything you need to work with
is directly in front of you.

FORTH allows easy MACHINE ACCESS, unlike most other high-level languages. All of
memory and-I/O (data ports and control registers) c an be addressed, although
run-time protection can be implemented simply by re defining appropriate system
or user words to include run-time bounds or other c hecks during testing. Except
for direct access to machine-specific registers (A, X, Y, etc. in the R6502 CPU)
which require assembly language subroutines, FORTH can do anything machine
language can do. And FORTH runs fast enough that us ually no assembly language
subroutines are necessary.

But if full machine speed is needed, RSC-FORTH incl udes an assembler. It also
allows machine language subroutines to be tested im mediately as soon as the
assembly source has been typed in or otherwise ente red, with no waiting for
separate assembly and linking passes. It encourages structured programming even
in assembly language; IF...ELSE and BEGIN...UNTIL m acros are provided. Users can
define their own macros, and use the full power of FORTH for address arithmetic
and other assembly-time utilities. All R6502 and R6 511Q op codes and addressing
modes are available. This one-pass assembler is imp lemented in about 1.5K bytes,
illustrating the compactness of FORTH's object code .

The routines created by this assembler have FORTH n ames and behave exactly like
regular FORTH definitions. The user needn't know wh ich words are programmed in
assembly language. Therefore, an application can fi rst be written entirely in
high level using FORTH words, and, if more speed is necessary, parts can be
converted to assembly language code with no changes required elsewhere.

3-2

FORTH code is extremely TRANSPORTABLE between machi nes. It is common for
substantial programs to be moved between different computers such as 6502, 8080,
and PDP-11 with very little change or none at all. The RSC-FORTH system follows
the FORTH Interest Group (FIG) language model, prob ably the most common dialect
of FORTH, and one closely aligned with the Internat ional Standard for the
language. The FIG model is available on the common small computers and is
rapidly being implemented on others. Therefore the R65F11/R65F12 microcomputer
in conjunction with the R65FR1 Development ROM can be used to develop software
for other computers, and it can use published FIG-m odel code regardless of the
machine on which it was developed. Published progra ms are commonly written
entirely in FORTH with no machine code or other dep endencies, but designed so
that short, time critical words can be rewritten in assembly language for
optimization on any particular host machine. These programs can first be run
unchanged, then optimized only if needed.

As in any programming, good style makes the applica tion program easier to debug
and verify, and easier to read and modify when requ irements change. Many
recommended FORTH practices are familiar from other language environments, but
some are different. Practices such as top-down desi gn and bottom-up coding and
testing, short modules, indentation of control stru ctures, and a glossary as the
principal documentation during development, are dis cussed throughout this
manual.

3.2 DEBUGGING

The FORTH environment's convenient and powerful deb ugging and error control
features are an important advantage of the system. FORTH allows complete access
to the machine, without the restrictions of many ot her languages such as BASIC
and Pascal which try to guard the programmer agains t mistakes. Most users report
that FORTH allows them to quickly produce and modif y programs which are
exceptionally reliable.

Although RSC-FORTH includes extensive compile-time checking which detects most
of the detectable errors (see Appendix E), the most important error control is
in the tools which the FORTH environment itself giv es to the programmer.

Like most other modern languages, FORTH encourages "structured programming"
design techniques, which helps to control errors. F ORTH is extremely modular,
even compared to other structured languages; each s oftware module can be tested
and debugged independently. Usually all communicati on between a module and the
outside world is through an internal stack. Each mo dule relies on earlier
modules which have already been debugged, and in tu rn, the new testing helps
catch any errors that may still be hidden in the ea rlier work.

Testing is immediate and interactive; simply type a rguments onto the stack,
execute the word, and output the results. If more elaborate test data is
needed, a special word can generate it. This ease of testing means that a large
number of tests can be run quickly.
Each module should be short, in the programming sty le preferred by most FORTH
users, so that all possible paths of control can be tested easily.

3-3

If correct results are not obtained, it is possible to step through the
definition by executing each component word individ ually, checking the stack
whenever desired. RSC-FORTH has a special word, .S , which non-destructively
prints the stack contents to help in this kind of d ebugging. Any unexpected
results can be localized to a particular component word, which in turn can then
be examined in detail. Because FORTH words work id entically when compiled, or
when executed as commands, the programmer can debug at either a batch or
interactive operation mode.

Because FORTH is extensible, words can be re-define d to perform their original
functions and, in addition, give special debug prin t-outs or do run-time error
checks. These redefinitions can be inserted into pr ograms for testing and
removed later; nothing else in the program need be changed.

RSC-FORTH also includes a memory dump and other wor ds for examining or changing
memory. These commands can be compiled into progra ms or executed from the
keyboard.

In contrast to most other operating systems, all of these tools are part of the
normal FORTH environment. No special syntax or comm and language must be learned
for debugging.

Each FORTH word is documented by a glossary (see Ap pendix B) which lists the
arguments it takes from the stack and the results r eturned, and gives a short
verbal description (usually one to three sentences) of its action. Such a
glossary completely describes the word as it is see n by any other part of the
program. When a new word is being tested, all earli er words should have these
descriptions available. Therefore, the programmer seldom needs to look at the
source code of any other word; the glossary fully d escribes its functions.
During testing and debugging, only one word at a ti me needs to be examined —
this greatly cuts down the need for program listing s during development.

One important debugging procedure applies only to F ORTH. After a word appears to
work correctly it must be tested to make sure that it does not take any
unexpected numbers off the stack, or return unexpec ted results. One way to
check is to leave markers, easily-recognized number s, such as 1, 2 and 3, on the
stack and then execute the word being debugged. Aft er an operation, use .S to
make sure that the markers are still on the stack, below any arguments returned
by the test word. This check is important because o therwise the word may look
like it works, but causes later program crashes at unexpected and seemingly
random places making the problem hard to debug.

3-4

SECTION 4

ELEMENTARY OPERATIONS

This section provides a step-by-step description of elementary RSC-FORTH
operations, such as:

 . Performing simple arithmetic and comparison s
 . Entering and retrieving data from memory
 . Using the stack
 . Compiling interactively or in a batch mode from memory
 . Defining new FORTH words
 . Performing looping and conditional sequence s

A major portion of FORTH is the FORTH dictionary it self. Each word in the FORTH
dictionary causes specific actions or operations to be performed. The use of
FORTH is explained primarily by describing how each word operates and how to use
it, either individually or with other words. Let's start by seeing what is in
the FORTH dictionary.

List the contents of the FORTH dictionary by runnin g a VLIST . Type

 VLIST

and then press the <RETURN> key. The entire FORTH d ictionary will be displayed.

Terminate the listing at any time by pressing any k ey. The entire VLIST is shown
in Figure 4-1. Note that the words do not appear to be in any general order; the
words are listed by their address in the R65FR1 Dev elopment ROM. (The FORTH
dictionary structure is explained in detail in Sect ion 5.5, but leave that for
later.) These FORTH words are described in ASCII so rt order for convenient
lookup in the glossary in Appendix B and summarized by associated function in
Appendix A.

RSC-FORTH may be readily learned by performing the following procedure. As each
new FORTH word is encountered in this section, read the explanation and perform
the accompanying examples. Then read the word defin ition in the Appendix B
glossary. Repeat the examples, but vary one or mor e of the parameters until you
thoroughly understand the operation of the describe d FORTH word.

As you are learning FORTH, you may make errors that either cause an error
message to be displayed or cause the microcomputer to hang up or to run away. If
an error occurs with a displayed error message or n umber, refer to Appendix E
for the error definition and suggested recovery. If the program appears to hang
up or run away, press the <RESET> key to reinitiali ze the microcomputer. You can
then try the example again. You may have to back up a few steps, however, to
recover the example initialization.

4-1

VLIST
 40B TASK 3844 ADMP 3805 ; DUMP 37CF FORMAT
 367E FMTRK 3674 BANKEXECUTE 3664 BANKEEC! 3657 BANKC@
 364C BANKC! 3641 EEC! 361E C ASE: 35FD MEMTOP
 35ED SCDR 35DF SCSR 35D1 S CCR 35C3 MCR
 35B6 IER 35A9 IFR 359C P G 3590 PF
 3584 PE 3578 PD 356C P C 3560 PB
 3554 PA 3548 NMIVEC 3538 I RQVEC 3528 INTVEC
 3518 INTFLG 34EF C,CON 34AC . S 349F MON
 345B VLIST 33EC INDEX 33A0 L IST 3397 ?
 3391 . 338B .R 3384 D . 337D D.R
 3375 #S 336E 1 3368 S IGN 335F #>
 3358 <# 3351 SPACES 333E W HILE 331A ELSE
 3301 IF 32E8 REPEAT 32CF A GAIN 32BF END
 32A9 UNTIL 3291 +LOOP 3279 L OOP 3264 DO
 3257 THEN 323A ENDIF 3226 B EGIN 3185 FORGET
 3149 AUTOSTART 3110 ?KERNEL 30BC H WORD 3086 H/C
 306E ‘ 3068 SEEK 305F I NIT 3056 DWRITE
 304B DREAD 3041 SELECT 3036 D ISK 3023 R/W
 3017 B/SCR 3009 B/BUF 2FED - BCD 2FC9 —->
 2F99 LOAD 2F40 MESSAGE 2F0F > LINE 2EFB .LINE
 2ED7 (LINE) 2E94 DUMP 2E69 F LUSH 2E09 BLOCK
 2DBF BUFFER 2D9A EMPTY-BUFFERS 2D72 U PDATE 2D41 +BUF
 2D38 M/MOD 2D2E */ 2D27 * /MOD 2D1D MOD
 2D15 / 2D0F /MOD 2D06 * 2D00 M/
 2CF9 M* 2CF2 MAX 2CEA M IN 2CE2 DABS
 2CD9 ABS 2CD1 D+- 2CC9 + - 2CC2 S->D
 2CB9 COLD 2C4C ABORT 2C1D Q UIT 2C0B (
 2BF9 DEFINITIONS 2BE1 ASSEMBLER 2BCS FO RTH 2B97 VOCABULARY
 2B7D IMMEDIATE 2B2D INTERPRET 2B02 ? STACK 2AE5 DLITERAL
 2AB2 LITERAL 2A94 [COMPILE] 29F1 C REATE 29C8 ID.
 298B ERROR 2977 (ABORT) 2949 - FIND 28F1 NUMBER
 28E6 (NUMBER) 2894 WORD 288B H OLD 2882 BLANKS
 2877 ERASE 286D FILL 2846 2840 QUERY
 2836 EXPECT 2804 ." 27FD (.") 27F4 -TRAILING
 27E6 TYPE 27DD COUNT 27C1 D OES> 27AF <BUILDS
 2795 ;CODE 277D (;CODE) 2771 D ECIMAL 2765 HEX
 2753 SMUDGE 273D] 272D [2715 COMPILE
 26F8 ?CSP 26E4 ?PAIRS 26CC ? EXEC 26B3 ?COMP
 269B ? ERROR 2686 !CSP 2670 P FAPTR 2656 NFA
 2646 CFA 263C LFA 262A L ATEST 2604 TRAVERSE
 25F7 -DUP 25EE SPACE 25E4 P ICK 25DB ROT
 25D3 > 25CD < 25C7 U < 25C0 =
 25BA - 25A8 C, 2595 , 2587 ALLOT
 2575 HERE 2560 ,/ 2551 A LLOT/ 253E HERE/
 2524 DP/ 251C 2- 2515 1 - 250E 2+
 2507 1+ 2500 PAD 24F0 L IMIT 24DE FIRST
 24D4 C/L 24C9 KHZ 24BE M ODE 24B2 CSP
 24A7 STATE 249A CURRENT 248B C ONTEXT 247C SCR
 2471 BLK 2466 PREV 245A U SE 244F UABORT
 243B VOC-LINK 242B HEADERLESS 2419 D P 240F FENCE
 2402 WARNING 23F3 WIDTH 23E6 O FFSET 23D8 ULIMIT

Figure 4-1. VLIST of RSC-FORTH Words
4-2

 23CA UFIRST 23BC B/SIDE 23AE C YLINDER 239E DISKNO
 2393 HLD 238B DPL 2383 I N 237C CLD/WRM
 2370 BASE 2367 UR/W 235E U PAD 2355 UC/L
 234C R0 2345 S0 233E T IB 2336 BL
 232F 4 2329 3 2323 2 231D 1
 2317 0 2303 USER 22EC C ODE 22D9 VARIABLE
 22BE CONSTANT 22A3 ; 2285 : 226F C!
 2268 ! 2262 C@ 225B @ 2255 TOGGLE
 224A +! 2243 BOUNDS 2238 2 DUP 222F DUP
 2227 SWAP 221E 2DROP 2214 D ROP 220B OVER
 2202 DNEGATE 21F6 NEGATE 21EB D + 21E4 +
 21DE 0< 21D5 NOT 21CD 0 = 21C6 R
 21C0 R> 21B9 >R 21B2 L EAVE 21A8 ;S
 21A1 RP@ 2199 RP! 2191 S P! 2189 SP@
 2181 XOR 2179 OR 2172 A ND 216A U/
 2163 U* 215C CMOVE 2145 F INIS 20F9 SOURCE
 20E6 XOFF 20D5 XON 20CD C R 20C6 ?TERMINAL
 20B8 KEY 20B0 EMIT 20A7 E NCLOSE 209B (FIND)
 2090 DIGIT 2084 I 207E (DO) 2075 (+LOOP)
 2069 (LOOP) 205E 0BRANCH 2052 B RANCH 2047 EXECUTE
 203B CLIT 2032 LIT OK

Figure 4-1. VLIST of RSC-FORTH Words (Cont'd)

4-3

In the following descriptions, a FORTH word compris ing of letters and numbers is
written in upper case. Since some FORTH words cont ain special characters that
may be confused with sentence structure, e.g., peri ods, commas, or apostrophes,
the FORTH words are set off by spaces, e.g., .S . These single spaces are not
part of the FORTH word and should not be entered.

4.1 SIMPLE ARITHMETIC

FORTH arithmetic, like that of advanced pocket slid e rule calculators, uses a
stack to store operands and results. Operations suc h as + - * / (add, subtract,
multiply, and divide) take their arguments from the stack, and return their
results to it.

To see how the stack works, give FORTH a cold resta rt by typing

 COLD

and pressing the <RETURN> key. The system will disp lay

 RSC-FORTH VI.6

Now type the following five numbers

 1 22 333 -44 5

and terminate the input by pressing the <RETURN> ke y. <RETURN> at the end of a
line signals that your input is complete. (The <RE TURN> is shown in the initial
examples, but is not shown in later examples, excep t where needed to clarify
data or command entry.) Be sure to insert one or mo re spaces between each
number. Now the numbers 1 through 5 are separate nu mbers stored on the stack
with 5 at the top. FORTH responds to your input by displaying OK . OK means
that the system has correctly acted on your command and is waiting for another
command to be entered. (The OK is not shown in mos t of the examples, however,
it is implied in all operations.) After <RETURN> is pressed, the following is
displayed:

 1 22 333 -44 5 OK

Notice that the cursor indicates the input characte r position. A typing error
during FORTH command or data entry can be corrected by pressing the , key
<BACK SPACE> or <RUB OUT> on the terminal as necess ary.

4.1.1 Examine Stack Contents with .S

The word .S (pronounced dot-s) may be used at any t ime to examine the contents
of the stack without altering the values or removin g the numbers from the stack.
Try it by typing

 .S <RETURN>

4-4

The numbers entered in the prior section will be di splayed (in some examples the
displayed data is underlined to distinguish it from entered data)

 5
 -44
 333
 22
 1 OK

The .S word is very useful when learning RSC-FORTH or debugging a FORTH program
to determine the stack contents immediately prior t o and/or after executing a
FORTH word.

4.1.2 Print from the Stack using .

The print command removes a number from the stack a nd displays it (and prints it
if the printer is ON) in the current I/O number bas e. In FORTH, the print
command is represented by a period and is called "d ot". Type

 . <RETURN>

The 5 will be displayed and removed from the stack.

 . 5 OK

Verify this by typing .S and <RETURN> to show the n ew contents of the stack.

 -44
 333
 22
 1 OK

The next dot (and <RETURN>) will print the -44. Mul tiple commands separated by
spaces, can be typed on one line like this

 . . <RETURN>

to display two numbers from the stack, e.g.,

 . . <RETURN> 333 22 OK

Now only 1 is left on the stack. Output it with

 . <RETURN>

which displays

 . 1 OK

Trying to examine or print the stack contents when there are no numbers on the
stack will result in an error message. Try .S which will show

 .S <RETURN>
 EMPTY OK

4-5

Note that the word . will now cause a stack under flow and will display an
indeterminate value along with a stack empty messag e. Try it now

 . 0 (typical number)
 . ? STACK EMPTY

Similar FORTH operations trying to pull a number fr om an empty stack will result
in this error message. This error message, as well as others, are described in
Appendix E.

Notice that the data was displayed on the same line as the commands, i.e., the
FORTH word . in this case. Many times it is desir ed to display and print data
on a new line. The FORTH word CR issues a carriage return to the terminal.
Repeat the previous examples but insert CR before t he . word and note that the
numbers are displayed on separate lines. Also try CR after the . and observe
the results.

Perform a cold restart before continuing.

 COLD
 RSC-FORTH V1.6

4.1.3 Clearing the Stack

It is sometimes desirable to delete data from the s tack without performing a
COLD restart. The stack may be cleared by trying t o execute a word that is not
currently defined in the FORTH dictionary. This ca uses an error condition in
which FORTH echoes the missing word followed by a " ?" (see Appendix E for error
descriptions) and then clears the stack. Initially, the word Q is not defined in
the FORTH dictionary and can be conveniently used t o clear the stack.

Note also that entering a word that is not in the d ictionary will also delete
data that you may want on the stack — so be careful with your word entries or
you may have to re-enter data or repeat prior steps .

Enter some numbers on the stack and display the sta ck contents.

 678 356
 .S
 356
 678 OK

Type Q now and verify that the stack is cleared.

 Q
 Q ? .S
 EMPTY OK

4-6

4.1.4 Add + and Subtract -

Let's now perform some simple arithmetic. Put two n umbers on the stack, say

 12809 135 <RETURN>

Now type the add command

 + <RETURN>

The + takes whatever two numbers are on top of th e stack and adds them. It
removes those numbers (by convention, most FORTH op erations destroy their
arguments on the stack), and replaces them with the ir sum. Type

 . <RETURN>

to verify this. The sum will be displayed as

 . 12944 OK

As before, multiple operations can be placed on one line, e.g.,

 12809 135 + . <RETURN> 12944 OK

Subtract works in a similar manner. Try

 12809 135 - . <RETURN> 12674 OK

Repeat these last two examples but, insert CR befor e and after the word to
display the result on a separate line.

4.1.5 Multiply * and Divide /

Multiply and divide also work in a similar manner. Try the following

 38 78 * . <RETURN> 2964 OK

The word * multiplies the top two items on the st ack and leaves only the
result on the stack. The word / divides the secon d item on the stack by the
top item. Try

 13036 50 / . <RETURN>

which displays

 13036 50 / . 260 OK

Note also that the divide limited the result to an integer value (the full
answer is 260 with a remainder of 36). Other operat ions allow the remainder to
be saved (see Section 5.1). In all FORTH arithmeti c and comparison words
requiring two data items, the operator behaves as i f it were between the top two
values on the stack. Thus, 13036 50 / behaves as if it were 13036 / 50.

4-7

Each number on the stack is 16 bits wide, therefore these single numbers have
the range -32768 to 32767 since the most significan t bit (bit 15) is used for
the arithmetic sign. This is enough for many applic ations, but RSC-FORTH also
has double-precision (32-bit) numbers which are dis cussed in Section 5.1.

4.1.6 Postfix Notation and Stack Operation

Note that in the preceding examples, the operators (+ , - , * and /) were
typed after their arguments, not between them. This style of arithmetic notation
is called POSTFIX or Reverse Polish Notation (RPN). It can represent complex
formulas without any use of parentheses. For instan ce

 (42-50)*(128-1090/3)

would appear in postfix as

 42 50 - 128 1090 3 / - *

Note that the operands (the numbers) are in the sam e order in the postfix and
infix (ordinary arithmetic) expressions. Don't forg et to type . and <RETURN> to
display/print the result.

If you are new to postfix, you may want to follow t his example by using stack
diagrams, as shown in Figure 4-2. This illustration shows the successive states
of the stack after each number or operation has bee n processed. Each column
shows the stack at one time. The number on top is t he most accessible number on
the stack, ready to be used first by any operation which takes a number from the
stack. We say that this number is at the TOP of th e stack.

In the execution of the postfix formula shown above , 42 is placed on the stack
(first column of Figure 4-2) — then 50 is entered. The subtraction destroys
those arguments and leaves the difference, -8. You can follow the rest of the
process similarly.

Each column in Figure 4-2 shows the stack at the ti me after each successive
number or operation of the formula has been process ed. Note that any numbers
which may have been below these numbers on the stac k will be undisturbed. Repeat
the above example but insert .S after each number a nd operator to examine the
stack contents after each operation.

Only numbers go on the stack. Strings or other data structures do not reside
there directly — although some data such as pointer s (addresses), length and
offset information, ASCII values, are frequently on the stack.

How many numbers can reside on the stack at one tim e? RSC-FORTH limits the stack
depth to 50 16-bit values in order to keep the para meter stack in zero page to
maximize the R65F11 CPU execution speed. Except for certain recursion problems,
very few programs ever need a stack depth of more t han about 20.

4-8

Figure 4-2. Stack Diagram of Postfix Example

4.1.7 Decimal and Hexadecimal Number Base

Up to now we have been working in DECIMAL . FORTH a llows input and output data
to be represented in different number bases. We wil l consider only two pre-
defined bases now — DECIMAL and HEX . FORTH is init ialized to DECIMAL (base 10)
during initial entry or upon commanding COLD . DECI MAL is best used when working
with numeric calculations. HEX operates in hexadeci mal (base 16) and is most
useful when working with addresses or logical opera tions on individual bits.

Type DECIMAL or HEX to change FORTH to the desired base before entering or
displaying data in that base. FORTH will stay in th e selected base until the
base is changed or until FORTH is reinitialized (to DECIMAL). Note that DECIMAL
and HEX affect the input and output data representa tion and not internal data
handling.

Reinitialize FORTH and put the following numbers on the stack and print them
using different combinations of DECIMAL and HEX .

 COLD <RETURN> (Initializes DECIMAL)
 RSC-FORTH VI.5

Press <RETURN> after the word . in each of the foll owing examples:

 16 . 16 OK
 16 HEX . 10 OK
 10 DECIMAL . 16 OK
 255 . 255 OK
 255 HEX . FF OK
 DECIMAL 32767 . 32767 OK
 32767 HEX . 7FFF OK
 DECIMAL -32768 . -32768 OK
 -32768 HEX . -8000 OK

4-9

Note that DECIMAL numbers -1 to -32768 entered on t he stack will be displayed in
HEX in 2's complement form with a leading minus sig n.

We will examine other number bases later (see Secti on 4.11.3).

4.2 STACK MANIPULATION

Since most FORTH words use the stack to hold input or output numbers, let's
explore some FORTH words that are used to rearrange or copy numbers near the top
of the stack. While these functions are sometimes n ecessary, you should avoid
using them where possible. FORTH code is more reada ble when less stack
manipulation is used. Common stack manipulation wor ds are discussed here,
however, to give you additional experience in worki ng with the stack before
proceeding into other FORTH word descriptions.

4.2.1 DUP , DROP , SWAP and OVER

The most common stack manipulation words are DUP , DROP , SWAP and OVER .
Let's explore these, but first place some markers o n the stack for reference

 DECIMAL 333 222 111 <RETURN>

If we accidentally pull too many numbers from the s tack we. will know where we
are. Type .S to check

 .S <RETURN>
 111
 222
 333 OK

DUP pushes a copy of the top number onto the stack to create a new top number.
In sequence

 123 DUP . . <RETURN>

duplicates 123 on the stack then displays both numb ers

 123 DUP . . 123 123 OK

DROP deletes the top number from the stack. Try thi s with

 456 789 DROP . <RETURN>

which deletes 789 and displays

 456 789 DROP . 456 OK

SWAP exchanges the top two numbers on the stack. Pu t two numbers on the stack

 456 789 <RETURN>

4-10

Use .S to look at the stack

 .S <RETURN>
 789
 456
 111
 222
 333 OK

Now swap the numbers on top the stack and examine t he stack with

 SWAP .S <RETURN>

which displays

 456
 789
 111
 222
 333 OK

Notice that the top two numbers are reversed. Now try OVER which copies the
second item to be the new top

 OVER .S <RETURN>
 789
 456
 789
 111
 222
 333 OK

4.2.2 Test and Duplicate with -DUP

A related word -DUP duplicates the top number on t he stack only if it is non-
zero; otherwise -DUP does nothing. Continuing fro m the prior example, type

 -DUP .S <RETURN>

to show that the top number was duplicated.

 789
 789
 456
 789
 111
 222
 333 OK

Let's remove and display the top four numbers from the stack before continuing

 CR <RETURN>

4-11

which displays

 789 789 456 789 OK

Now, enter

 0 -DUP CR .S <RETURN>

which displays

 0
 111
 222
 333 OK

Notice that the top number was not duplicated. -DU P is usually used before an
IF (see Section 4.8.1). In the non-zero case, some action is usually performed
using the value; the extra copy made by -DUP is th erefore removed by the IF
processing. In the zero case, no additional action is performed, thus, the extra
copy of the top number is not needed.

4.2.3 Delete the Top Stack Item with DROP

The word DROP deletes the top item on the stack. D rop the zero now and check
the stack contents

 DROP .S <RETURN>
 111
 222
 333 OK

4.2.4 Rotate Stack Items with ROT

ROT rotates the top three items, moving the third item to the top, the previous
top item to the second, and the previous second ite m to the third.

For example,

 800 700 600 .S <RETURN>
 600
 700
 800
 111
 222
 333 OK

Now rotate and display with

 ROT .S <RETURN>

4-12

which outputs

 800
 600
 700
 111
 222
 333 OK

Now remove and display the top three numbers

 CR . . . <RETURN>
 800 600 700 OK

4.2.5 Copy a Stack Item with PICK

PICK looks down any depth into the stack and copie s the nth number from the top
(not counting the n itself) and places it on top.

 1 PICK

is the same as DUP , and

 2 PICK

is the same as OVER . Put several numbers on the s tack and check them

 40 50 60 70 80 .S <RETURN>
 80
 70
 60
 50
 40
 111
 222
 333 OK

Now pick the 4th item (i.e., 50), and look at the r esults

 4 PICK .S <RETURN>
 50
 80
 70
 60
 50
 40
 111
 222
 333 OK

4-13

4.3 MEMORY OPERATIONS

Several FORTH words move data between the stack and memory, or from memory to
memory.

4.3.1 16-Bit Store ! and Fetch @

The FORTH word

 !

(pronounced "store") takes an address from the top of the stack and the 16-bit
value beneath it and stores the value into the addr ess (and address +1).

A corresponding word

 @

(pronounced "fetch") takes an address from the top of the stack, fetches the 16-
bit data from that address (and address +1) and rep laces the address on top of
the stack with the data from memory. Both the addre ss and the data are specified
in the current number base. Initialize FORTH and tr y

 COLD
 RSC-FORTH V1.6
 HEX OK
 30FF 200 ! OK
 200 @ CR .
 30FF OK

which stores 30FF into addresses $200 and $201 with ! , fetches the contents of
addresses $200 and $201 with @ and displays it wi th . . Try

 DECIMAL
 16000 HEX 200 ! OK

to store a decimal number in an address entered in hexadecimal. Now display the
data in decimal by

 200 @ DECIMAL CR .
 16000 OK

which fetches the contents of addresses $200 and $2 01 and stores it on the
stack, switches to the decimal mode, and outputs th e data in decimal when is
commanded.

Now fetch and display the value in hexadecimal by

 HEX 200 @ CR .
 3E80 OK

4-14

4.3.2 8-Bit Store C! and Byte Fetch C@

Similar words allow byte length data to be stored a nd fetched. The word

 C!

("c-store") stores the least significant 8-bits of the second item on the stack
into the address determined by the number on top of the stack. The word

 C@

("c-fetch") accesses the 8-bits stored at the addre ss on top of the stack and
stores it on top of the stack (replacing the addres s). Try

 HEX OK
 41 200 C! OK
 F4 201 C! OK

which stores 41 and F4 into addresses $200 and $201 , respectively. Display the
contents of those address with

 200 C@ 201 C@ CR . .
 F4 41 OK

4.3.3 Initializing Memory with ERASE , BLANKS a nd FILL

Three words allow a block of memory to be initializ ed to various values.

ERASE fills memory with zeros ($00) starting at a specified address (second on
the stack) and continuing through the number of byt es specified (top number on
stack)

 HEX 200 100 ERASE OK

Spot check with

 200 @ 2FE @ CR . .
 0 0 OK

Note that if the contents of $2FF were fetched, a n on-zero number may be
displayed since '@' fetches two bytes ($2FF and $30 0) and address $300 was not
erased. The last byte could have been checked with

 2FF C@ CR .
 0 OK

BLANKS works like ERASE except that memory is in itialized to ASCII blank
($20) instead of zeros. Try

 HEX 200 100 BLANKS OK
 200 C@ 2FF C@ CR . .
 20 20 OK

4-15

FILL allows memory to be initialized to a desired v alue. In addition to the
starting address (third on the stack) and the numbe r of bytes to fill (second on
the stack), the fill bit pattern (top of the stack) is specified). Try

 HEX 200 100 FF FILL OK
 200 C@ 2FF C@ CR . .
 FF FF OK

Try

 200 @ 2FE @ CR . .
 -1 -1 OK

Notice that the 2's complement value (-1) was displ ayed when 16-bit numbers were
accessed.

Note also that HEX is not required if FORTH is alre ady in the HEX mode.

4.3.4 Dumping Memory with DUMP

A block of memory can be displayed using DUMP . A starting address (second on
the stack) and the number of bytes to be dumped (to p of the stack) are
specified. Try

 HEX
 200 14 F8 FILL OK (Fill 14 hex locations wit h $F8)

Enter

 200 14 DUMP <RETURN> (Starting at $200)

to display

 200 F8 F9 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8
 210 F8 F8 F8 F8 FF FF FF FF FF FF FF FF FF FF FF FF
 OK

4.3.5 Moving a Block of Memory with CMOVE

It is often useful to move a block of data from one area of memory to another.
This can be done with the word CMOVE which takes three arguments on the stack:
a from-address, a to-address, and a byte count. It moves the given number of
bytes starting with the first address to the area o f memory starting at the
second address.

Try

 200 40 80 FILL OK
 240 40 FF FILL OK
 200 280 8 CMOVE OK
 240 288 8 CMOVE OK
 280 10 DUMP
 280 80 80 80 80 80 80 80 80 FF FF FF FF FF FF FF FF
 OK

4-16

CMOVE works from the left to right, so be careful i f the "from" and "to" memory
areas overlap.

4.4 DEFINING YOUR OWN OPERATIONS

FORTH allows you to create your own operations. Th ese new FORTH words become an
integral part of the language, just like those whic h are pre-defined in RSC-
FORTH. Your new words can take any number of argume nts from the stack, and
return any number of results.

The names of your operations can have up to 31 char acters. They can use any
ASCII characters except blank, delete, null and car riage return. For instance,
an operation name could be a number, or even be non -displaying or non-printing
control characters, although such names are discour aged. Even names already used
by the system may be redefined as something else; t herefore there is no reserved
word list in FORTH. When a name is redefined, the o ld definition becomes
inaccessible for later use in the program (although all earlier references to
that name will remain as before). So, do not redefi ne a name if you want to use
the old definition later.
Names which are descriptive of the function they pe rform make the code easier to
read. Good choice of names is important for later use of the code, especially
by other programmers.

As new words are defined, they are added to the FOR TH vocabulary (described in
more detail in Section 5.6). These definitions are normally stored in RAM
starting at address $0404 and build upward in memor y. (They can also be stored
in PROM/ROM in normal or headerless target compiled format as described in
Section 11.) The FORTH word VLIST allows you to che ck what words have been added
to the FORTH vocabulary.

4.4.1 Colon-Definition

Suppose we want an operation to take the number on top of the stack, multiply it
by 5, and print the result. Let's pick the name TE ST-OP . We could define it
simply as

 : TEST-OP 5 * . ; <RETURN> OK

(Later we will rewrite this definition, using inden tation and commenting
conventions for more readable code). Enter the colo n-definition as follows

 a. Start the definition with a colon which te lls FORTH to look ahead in
 the input stream for the word name. Follo w the colon with a space.

 b. Enter the word name (up to 31 characters). The FORTH word here is
 TEST-OP .

 c. Enter the definition of the word. TEST-OP does the following:

 1. Puts 5 on the stack
 2. Multiplies the top two numbers, i.e., t he number on top of the
 stack when TEST-OP is executed by the 5 put on the stack by
 TEST-OP .

4-17

 3. Prints the result, i.e., the top number on the stack.

 d. End the definition with a semi-colon (be s ure to insert a space
 first). A FORTH definition may be continue d on as many lines as
 needed.

This TEST-OP operation takes one number from the stack, as we have seen. It
does not return any result (but if the . were omi tted, the product would stay
on the top of the stack). Note that no formal param eters are used to show the
inputs and outputs of an operation. These are impli cit — TEST-OP takes one
argument because it puts one number (5) on the stac k then performs a multiply
which uses two numbers (the 5 and one other). Chec k the operation of TEST-OP
by placing a value on the stack and executing TEST -OP , e.g.

 6 TEST-OP <RETURN> 30 OK
 8 TEST-OP <RETURN> 40 OK

If the word being defined is already in the vocabul ary dictionary, the message
<name> NOT UNIQUE will be displayed. The NOT UNIQUE message is displayed only as
a reminder that you have redefined a word which was previously defined and has
no effect on the compilation process, e.g.

 : TEST-OP 10 * . ;
 TEST-OP NOT UNIQUE OK

Now test it with

 6 TEST-OP <RETURN> 60
 8 TEST-OP <RETURN> 80

Note that only the new definition of TEST-OP is fou nd and executed.

4.4.2 Find a Word in the Dictionary with '

Use the word ' (pronounced "tick") to find if a w ord is already contained in
the dictionary and to return its parameter field po inter address (PFAPTR).
(Note: This varies from most FORTH systems which r eturn the parameter field
pointer (PFA). This additional level of indirection is necessary to run
separated heads and codes).
Type the word <name> after the word ' , i.e. ' <n ame>
FORTH will respond with OK for a found word and put the word's parameter field
pointer address on the stack (See Section 5.5 for d escription of the parameter
field pointer address). If not found, the name is echoed with a "?" and the
stack is cleared.

4-18

Check TEST-OP now (and print the address in the d ictionary)

 HEX OK
 ' TEST-OP <RETURN> OK
 .S
 432 OK

We can also run a VLIST to determine if TEST-OP is in the dictionary and to
verify the address returned by ' . This is easy in this case since only two
colon-definitions have been added to the dictionary and these two entries are
printed immediately. Press any key to terminate VLI ST.

 VLIST
 432 TEST-OP 41B TEST-OP 4DB TASK 3844 ADMP
 3805 ;DUMP 37CF FORMAT 367E FMTRK 3674 BANKEXECUTE
 (A key was pressed here)
 OK

While both versions of TEST-OP are listed, only the version at address 432 is
valid since it was defined last.

4.4.3 Print a Message with ."

You can print a message of up to 127 characters wit h the word ." (dot-quote).
Start the message one or more spaces after the ." word. Terminate the message
with " (a double quote). Be sure to leave a space after the ."

Now define a new word to use ."

 : MULTIPLY
 CR ." ANSWER=" 5 * . ; <RETURN> OK

and test it

 DECIMAL
 108 MULTIPLY
 ANSWER=540 OK
 1345 MULTIPLY
 ANSWER=6725 OK

4.4.4 Commenting

Because the inputs and outputs are not explicit in FORTH code, it is very
important to show them in the documentation. It is recommended that they be
included as comments in the code and also in a sepa rate glossary of operations.
Each glossary entry should include the inputs, outp uts and a short description
of what the operation does — usually two or three s entences are enough.

Comments in FORTH are enclosed in parentheses. A sp ace must follow the left
parenthesis because the left parenthesis is itself a FORTH word, which causes
FORTH to look for a closing delimiter. The closing right parenthesis need not be
preceded by a space however, since it is a delimite r and not an operation.

4-19

A <RETURN> also acts like a right parenthesis, to t erminate a comment. FORTH
comments can be included on as many lines as needed ; however, the comment must
start with a left parenthesis followed by a space o n each new line.

A conventional form of comment first lists the inpu ts, then three dashes, then
the outputs. A period may be used to separate the l ast output word from the
words of any description of the function of the ope ration. Therefore the TEST-
OP definition could look like

 : TEST-OP (N --- . MULT BY 5 AND PRINT)
 5 * . ;

A common style is to have only the colon, the word being defined, and the
comment on the first line, then indent subsequent l ines three columns. If the
comment is too long, put it on the second line. The re is no compiled code
penalty for including comments and spaces so they c an be used freely to improve
readability when preparing object code for mass sto rage; or if a listing is
being made of the source. When interactively enteri ng commands from the keyboard
comments are not very useful.

When there is more than one input or output in a co mmand, the right-most numbers
are toward the top of the stack. A comment for a de finition of a multiply
operation might therefore be

 : MPY (N1 N2 --- . MULTIPLY & PRINT)
 * CR . ;

Note that an empty comment must consist of at least a left parenthesis, two
spaces, and a right parenthesis. The reason is that the parsing word (WORD in
FORTH) skips over leading occurrences of the delimi ter. So if you leave only one
space, as in

 ()

the first character encountered by WORD is the righ t parenthesis, therefore the
system skips it and continues looking for another r ight parenthesis.

4.5 EXECUTING AND COMPILING USING SOURCE

Up to now you have been operating in a manner where FORTH operations are
compiled or executed immediately upon entry in an i nterpretive mode. If a new
FORTH word is formed using a colon-definition (see Section 4.4) the word is
immediately compiled and entered into the FORTH voc abulary upon completion of
entry. Upon commanding the new FORTH word, the defi ned function is executed.
FORTH words can also be compiled and executed in a batch mode. In this mode,
the FORTH words are compiled or executed upon entry from mass storage. The
source program for colon-definitions is not lost up on compilation with this
technique, therefore, changes can easily be made wi thout requiring re-entry of
the whole program.

4-20

There are two methods of batch compiling in RSC-FOR TH. The first method uses the
standard FORTH technique of multiple RAM buffers an d 1024 byte screens. This
technique is commonly used for manipulating, saving , and retrieving data files
on mass storage. This method is discussed in Sectio n 12.

The second method of batch compiling accepts an inp ut from an intelligent
terminal, or download from another computer. Enteri ng the word SOURCE causes the
RSC-FORTH system to enter an XON-OFF protocol. It begins by transmitting an XON
character when SOURCE is first executed and accepts inputs until a null or
carriage return is received, or until the number of characters per line limit is
reached. It then transmits an XOFF character and i nterprets the received line.
When interpretation is finished for that line, an X ON is transmitted to
reestablish communications for another line. When t he word FINIS is executed, or
an error is detected, the compilation stops and con trol is returned to FORTH.
Characters sent to the RSC-FORTH system are not ech oed to the sending unit. Most
terminals and computer systems that have the XON-XO FF protocol can be used with
SOURCE.

4.6 DO LOOPS

4.6.1 DO ... LOOP

The DO and LOOP statements allow repeated execu tion of a block of code.
For example, the following definition creates a wor d SERIES , which prints a
series of 25 numbers, zero through 24:

 : SERIES (--- . PRINT A SERIES)
 CR 25 0 DO I . LOOP ;

Now execute

 SERIES
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 17 18 19 20 21 22 23 24 OK

DO must always be paired with either LOOP or +L OOP (described in Section
4.6.2). The code section which they enclose can be of any length. This code is
executed repeatedly, and an index value, I, is avai lable.

When DO sets up the loop (at run-time), it always takes two arguments from the
stack. The top stack number (0) is the initial inde x value of the loop, and the
second argument (25) is the final value plus one. I f the initial value is zero,
as is often the case, the second argument is the nu mber of times around the
loop. Also, ordering the loop limits this way makes the loop upper limit more
accessible from outside a definition. We can see ho w this is done in the
definition of NSERIES, below.

The loop index value is kept by the system and incr emented automatically. The
FORTH word I retrieves this index and copies it ont o the stack. In the example
above, the index value is zero the first time throu gh the loop, then it is 1, 2,
etc. through 24. In this example, the index is prin ted each time. SERIES takes
no arguments from the stack and returns no results.

4-21

The recommended code-writing style for using DO a nd LOOP is to have the
entire loop in a single line if possible; if not, LOOP should be indented to
the same column as its corresponding DO . This st yle makes the program's
structure easier to see.

The definition

 : NSERIES (N --- . VARIABLE SERIES)
 CR 0 DO I . LOOP ;

creates NSERIES , which is almost like SERIES , e xcept that it takes one
argument from the stack, the number of times around the loop.

Now execute NSERIES

 10 NSERIES
 0 1 2 3 4 5 6 7 8 9 OK

Redefine SERIES now in terms of NSERIES , as

 : SERIES (--- . PRINT A SERIES)
 20 NSERIES ;

This redefinition will cause a "NOT UNIQUE" warning message to be printed. The
warning can be ignored in this case; remember, its purpose is to let you know
that the word has also been defined previously. As mentioned before, FORTH
allows any word to be redefined — even the system w ords such as DO itself. Any
further use of the word will refer to the latest de finition, but all earlier
uses still refer to the definition which was in eff ect when the earlier
references were compiled.

Execute SERIES now.

 SERIES
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 17 18 19 OK

In the examples above, notice that the only differe nce between SERIES and
NSERIES is that the latter does not place a loop t erminating value on the
stack. Instead, it uses whatever was on the stack when NSERIES was executed.
The NSERIES example also shows that the arguments to DO , the loop initial
and terminating values, need not be literal numbers ; instead they can be
computed or obtained in any way. DO doesn't care h ow its arguments got onto the
stack. This feature helps keep FORTH code modular a nd reduces side effects when
changes are made.

DO ... LOOP , and the other control structures whic h will be introduced later,
can only be used inside colon-definitions, i.e., th ey cannot be executed
directly as commands at the terminal. DO and LOO P are in a special class of
words called immediate words. These are not compil ed like other words used in
colon-definitions, but instead they execute at comp ile time to handle special
compilation functions, e.g., to compile an internal branch back from the LOOP
to its corresponding DO. Immediate words are discu ssed in Section 5.

4-22

An example of DO ... LOOP is a one millisecond ti me delay word (this example
assumes a 1 MHz internal clock rate):

 : MS (N --- . MILLISECOND DELAY)
 0 DO 5 0 DO LOOP LOOP
 CR ." TIME-UP" CR ;

This word will cause delays of n milliseconds when used by putting n on the
stack and then typing the word. To execute a 9 mill isecond delay, simply enter

 9 MS

At the end of the delay, the message

 TIME-UP

is displayed. Try it with larger delays, e.g., 1000 , to visually notice the
delay time.

4.6.2 +LOOP

The DO ... LOOP index always increments by 1. Ano ther word, +LOOP , allows
other increments. Each time around the loop, it tak es a number off the stack for
the increment, DO ... 2 +LOOP would increment by 2. The increment can be
computed and it can change during loop execution. I t can also be negative. The
following word causes an odd number in the range 1 to N to be printed.

 : ODD-SERIES (N --- . PRINT ODD SERIES)
 1 CR DO I . 2 +LOOP ;

Execute ODD-SERIES with 25 as the input number (d on't forget to put the input
number on the stack or a STACK EMPTY error may occu r).

 25 ODD-SERIES
 1 3 5 7 9 11 13 15 17 19 21 23 OK

4.6.3 LEAVE

LEAVE is another word used with DO loops. If LE AVE is executed within a
loop, it will set the limit to the index value, cau sing the loop to exit when
LOOP or +LOOP is next executed. LEAVE (and als o the index I) can only be
used inside a DO loop.

4.7 COMPARISON AND LOGIC OPERATIONS

The DO loop is one form of structured control in FORTH. Other structures
described later (IF ... THEN , ELSE ... THEN , BEGIN ... UNTIL , BEGIN
... WHILE ... REPEAT , and BEGIN ... AGAIN) may test Boolean values
(truth values) to control program execution. Compar ison and logic words place
Booleans on the stack and then the control words us e these values.

4-23

4.7.1 < , > and =

Simple FORTH comparison words are < (less than), > (greater than) and =
(equal). Each of these operations takes two argumen ts from the stack (destroying
those arguments) and returns one result (a Boolean) to the stack. The second
item on the stack is compared to the top item in ac cordance with the FORTH word.
If the comparison is true, a true ("1") is returned ; if false, a false ("0")
value.

4.7.2 U< , 0< and 0=

Other comparison operations are U< , 0< and 0= . U< (unsigned less than)
compares the top two stack numbers as unsigned 16-b it integers (see Section
5.1). 0< (zero less than) and 0= (zero equals) d iffer from the others in
taking only one argument from the stack; it is test ed for being less than zero,
or equal to zero, respectively. 0< leaves a true on the stack if the number is
less than zero, otherwise a false is left. 0= ret urns a true if the number
equals zero, otherwise a false is returned. 0= wo rks the same as

 0 =

written as two words; similarly for 0< . The one-wo rd forms are more efficient,
however (faster execution).

0= is equivalent to a logical "not", because it rev erses the truth value of the
top stack item (it changes 0 to 1, and 1 or any oth er non-zero value to 0).

Experiment with the comparison operations

HEX
 10 20 < . <RETURN> 1 OK
 20 10 = . <RETURN> 0 OK
 5 0= . <RETURN> 0 OK
 5 5 - 0=. <RETURN> 1 OK
 10 -10 < . <RETURN> 0 OK
 10 -10 U< . <RETURN> 1 OK
 1 0= 0= . <RETURN> 1 OK
 8 0= 0= . <RETURN> 1 OK

Note that the Boolean false value is always zero an d any non-zero value (not
only '1') is taken as a Boolean true. However, the value returned by these
comparisons is always 0 or 1.

4.7.3 Logical Operations

Logical operations AND , OR , and XOR (exclusiv e OR) are provided. These
are bit-wise operations. Each takes two arguments f rom the stack and returns one
result. Each of the 16 bits of the result is obtain ed by applying the logical
operation to the corresponding bits of the argument s. All bit positions are
treated independently.

4-24

 HEX
 F7 01 AND . <RETURN> 1
 08 01 OR . <RETURN> 9
 F7 01 XOR . <RETURN> F6

The word NOT is provided as a synonym for 0= (s ee Section 4.7.2) to improve
readability in logic expressions. Note that NOT i s not a bit-wise operation;
it is only a Boolean inversion and just returns the right-most bit of the word.
To negate all the bits of a word (i.e., to take its one's complement), use

 -1 XOR

For example

 HEX
 AAAA -1 XOR . <RETURN> 5555
 AAAA FFFF XOR . <RETURN> 5555

These logical operations can also be applied to tru th values returned by
comparisons; in this case, only the right-most bit of each word is important.
For example, suppose that a word ?HOT has already been defined to return a
value of true if a sensor detects a temperature hig her than a pre-set limit,
false otherwise. Also suppose that a voltage value is previously stored on the
stack. The test

 8 > ?HOT OR

will return true if the voltage (on the stack) is g reater than 8, or the
temperature is high, or both. In this example the v oltage value on the stack is
first compared to 8 by use of the relational operat or. This results in a Boolean
value left on the stack. Then ?HOT puts another Boo lean on the stack and the two
Boolean values are OR'ed together.

Note that

 ?HOT 8 > OR

would be erroneous in this case, because the Boolea n left on the stack by ?HOT
would be compared with the 8 and the result of that comparison (always false)
would be OR'ed with the voltage that was on the sta ck before this phrase was
extended.

4.8 CONDITIONAL CONTROL STRUCTURES

The following FORTH control structures test a Boole an result generated by the
comparison or logical operations, and direct the fl ow of program execution
accordingly.

4-25

4.8.1 IF ... ELSE ... THEN

As with other control structures, the IF and THE N must be used as a pair; if
they are not, error message #19 or #20 will be gene rated (see Appendix E) at
compile-time. Any correct block of FORTH programmin g may occur between the IF
and the THEN .
The IF takes one argument, a Boolean value, from the stack. If it is true
(non-zero), the code between IF and THEN is exe cuted; if false (zero), that
code is skipped. In either case control resumes wi th the THEN . For instance,

 GET-VOLTAGE 8 > ?HOT OR
 IF SHUT-DOWN THEN

will execute the (predefined) operation SHUT-DOWN if the previously defined
word GET-VOLTAGE returns a value greater than 8 o r ?HOT returns true (or
both).

An optional ELSE clause allows a block of code to be executed only if a test
is false. For example, the simple control loop

 10000 0 (Loop 10000 times)
 DO
 GET-VOLTAGE 8 > ?HOT OR (Danger?)
 IF GO-SLOWER ELSE GO-FASTER THEN
 LOOP

repeatedly tests whether temperature or voltage exc eed their limits, and
executes predefined operations GO-SLOWER or GO-F ASTER accordingly.

4.8.2 Nesting Control Structures

The previous example shows that control structures can be nested; an IF ...
ELSE ... THEN is inside a DO ... LOOP . Any of FOR TH's control structures can
be nested within any other to any practical depth. The recommended coding
technique is to keep each definition short and simp le, breaking complex
operations into two or more shorter ones. For this reason, great depth of
nesting is not normally used. For instance, in the examples above, operating
like GO-SLOWER and GO-FASTER may themselves con tain complicated control, it
is best to define them as separate words to avoid c luttering a single word with
many levels of nesting. Also, this is an example of top down coding as GET-
VOLTAGE , GO-SLOWER , GO-FASTER and ?HOT may n ot exist in final form yet as
the programmer experiments with the overall design of the control loop.

Of course GET-VOLTAGE , GO-FASTER and ?HOT mus t exist in some form at least
before the loop would compile in a definition. If not, the first unknown word
name encountered would cause the error message

 <name>?

to be output.

4-26

Another recommended coding style is to indent IF . .. THEN or IF ... THEN ...
ELSE like DO ... LOOP . Keep the whole structure on one line if it is short
enough, otherwise, indent the IF , ELSE (if pres ent) and THEN to line up
vertically. Each new level of nesting structure sh ould be indented at least one
space.

4.8.3 Masking and Setting Bits

The operations used for masking — selecting certain bits within a 16-bit word,
and turning them OFF or ON , or complementing or testing them — were largely
covered in Section 4.7.3. This section further expl ores these operations in many
of the control applications to which the R65F11 and R65F12 microcomputer is well
suited.

Mask values are best presented in hexadecimal. In h exadecimal, the values 0000
through FFFF can be input; a minus sign can also be used to input numbers 8000
to FFFF (-8000 to -1). The dot (period) works for output, but if the first bit
is set, use the phrase

 0 D.

(zero, double-precision print) instead, to avoid ha ving the number interpreted
as negative. This makes the top stack item a double integer, whose most
significant 16 bits are zero, and then uses the dou ble integer print word to
output the resulting positive 32-bit integer.

In the following examples we will be changing or te sting the last three bits of
a word; i.e., the mask value will be 0007 (last thr ee bits set, all others off).
This value could be written simply as 7, but the le ading zeros are
conventionally used on both address and mask values for program clarity. The
mask of course need not be a literal value as shown in these illustrations; it
could be computed, perhaps by previous logical oper ations, or input from the
terminal, etc.

To turn ON the last three bits of the word on top of the stack (leaving all
other bits unchanged), execute

 0007 OR

The OR operation, as described earlier, does a lo gical OR of each bit
independently. The sign bit is treated like any ot her. (In these examples, we
will assume that HEX has been executed to set the n umber base to 16.)

Similarly to turn OFF the last three bits, use

 FFF8 AND

To test if any of the last three are ON, use

 0007 AND

4-27

The stack top will now be zero if none of the last three bits were ON, and non-
zero otherwise. This value can be used as a Boolean by IF , UNTIL , or
WHILE , but be careful if the value is used as inpu t to another AND or OR ;
input to these operations should be a Boolean zero vs. one, not zero vs. non-
zero. If such further logic is to be done, use

 0= 0=

which leaves the truth-value unchanged but converts the zero/non-zero result
into a more correct zero/one Boolean. Use

 0007 AND 0= 0=
or
 0007 XOR

to complement (reverse values of) the last three bi ts of the top stack word.

To complement all bits, use

 FFFF XOR

(which could also be written

 -1 XOR

because the numeric representations FFFF and -1 are the same in 16-bit 2's-
complement arithmetic.)

With the operations AND , OR , and XOR , any tru th-value functions of one,
two or more arguments can be used.

4.8.4 BEGIN ... Loops

In a BEGIN ... UNTIL loop, the UNTIL takes a Bo olean value from the stack.
If false, it loops back to the BEGIN ; if true, it terminates the loop, i.e.,
the loop continues UNTIL a condition is true. The following loop executes
until ?HOT is true (non-zero):

 BEGIN
 PERFORM-AN-ACTION
 ?HOT (STOP IF HOT)
 UNTIL

The BEGIN ... WHILE ... REPEAT loop is almost opp osite; it will continue to
execute the statement(s) between WHILE and REPEA T while the condition
between BEGIN and WHILE is true. WHILE tests the Boolean; if true, it does
nothing, allowing control to remain in the BEGIN . .. REPEAT loop; if false, it
branches out of the loop (to beyond the REPEAT). The REPEAT always branches
back to the BEGIN . The following loop is almost t he same as the UNTIL loop
above

4-28

 BEGIN
 ?HOT 0=
 WHILE
 PERFORM-AN-ACTION
 REPEAT

The difference is that the words contained between WHILE and REPEAT loop can
execute zero times, but the words in the BEGIN ... UNTIL loop will always
execute at least once since the test is made at the end of the loop, not the
beginning. Note the use of 0= (equivalent to a lo gical NOT) to reverse the
truth-value returned by ?HOT.

A BEGIN ... AGAIN structure creates an infinite l oop. AGAIN takes no
arguments from the stack — it always causes control to return to its
corresponding BEGIN . This structure could be used in a real-time control
program to execute a final procedure until interrup ted. It is also possible to
exit this loop with a ;S word.

All of these structures can be nested within any ot hers. Again, avoid long or
complicated definitions. Short definitions make pr ograms easier to read, debug,
and modify.

4.9 DATA STORAGE

How can you get an address of available memory to u se for data storage?

One way to find available memory for data structure s is to use the top of your
RAM memory and work down, since your word definitio ns start at $411 and work up.
For instance, if you have 8K of RAM, addresses such as $1FOO-$1FFF might be used
for data, depending on the size of your program (i. e., the number and size of
your word definitions).

Another approach is to allocate memory for data wit hin the dictionary — the
words
 CONSTANT , VARIABLE and ALLOT , described in th e next chapter, do this.

4.9.1 Find Next Dictionary Location with HERE

The word HERE returns the address of the next ava ilable dictionary location.
HERE can be used to determine the size, i.e., the memory required of a colon-
definition.

The procedure is to type:

 HERE (puts current dictionary address on sta ck)

Enter the colon-definition

 : <name> --- :

4-29

Enter the current dictionary address on stack, swap to subtract the smaller
address from the larger, and then print the size of the defined word.

 HERE SWAP - .

Enter the following example of a square function. N ote the first available
dictionary location before and after entry of the SQUARE colon-definition. The
length of the colon-definition in the dictionary is $15.

 HEX OK
 HERE DUP . <RETURN> 411 OK
 : SQUARE DUP * . ; OK
 HERE DUP . <RETURN> 426 OK
 SWAP - . <RETURN> 15 OK

Check the operation of the SQUARE word.

 DECIMAL
 4 SQUARE <RETURN> 16

4.9.2 Use PAD for Temporary Storage

A common location for temporary storage in most FOR TH systems is the address
returned by the word PAD , and the memory above. I n RSC-FORTH, PAD returns a
starting address two bytes below the Terminal Input Buffer (TIB) in the USER
area of RAM. PAD must be used with caution theref ore in RSC-FORTH: the space
below PAD is used by RSC-FORTH itself for tempora ry storage. Let's restart and
check the starting address of the FORTH dictionary using HERE and the starting
address of the temporary storage area using PAD .

 COLD
 RSC-FORTH V1.6
 PAD HERE HEX .S
 411
 37E OK

In most FORTH systems PAD starts 68 bytes a bove the start of the FORTH
dictionary. To make RSC-FORTH compatible with othe r FORTH systems, define PAD
as follows:

 DECIMAL
 : PAD HERE 68 + ;

Since PAD is located relative to the current top of the RAM dictionary it will
change when any new words are defined, or when word s already in the dictionary
are forgotten. Usually this is not a problem becaus e any particular test or run
would move data into its temporary storage at PAD , and not rely on data stored
there previously.

As an example, add a word to the FORTH dictionary t hat can be used to check
where HERE and PAD are located, as other words are either added or deleted
from the dictionary. Then use it first to check it self.

4-30

 : CK-PAD (--- . CHECK PAD & HERE)
 PAD HERE HEX
 CR ." HERE=" .
 CR ." PAD=" . ;

Enter CK-PAD and compare the results

 CK-PAD
 HERE=43D
 PAD=481 OK

Now the memory fetch and store words can be tested, using PAD as available
memory. Try the sequence

 DECIMAL OK
 PAD 20 BLANKS OK
 15 PAD ! OK
 15 PAD 10 + C! OK
 PAD 10 HEX DUMP
 XXX F 0 20 20 20 20 20 20 20 20 F 20 20 20 20 20
 OK

The output shows the blanks (ASCII $20), the 15 ($O OOF) stored as a word (with
the bytes reversed by the 6502 CPU so it looks like OFOO),and the 15 ($F) stored
as a byte 10 bytes later. The

 10 +

shows use of an offset to an address; this techniqu e can be used to create data
structures such as arrays, records and fields, etc.

4.9.3 Increment Memory with +!

A very useful memory modification word is +! (pr onounced "plus store"). +!
takes a stack value and a memory address and adds t he value to the contents of
the address; for example, it is used for incrementi ng counters in memory.
Define the word BUMP to increment the contents of address $600 by one, eight
times, and prints the contents of $600 after each i ncrement.

 HEX
 : BUMP
 CR 8 0 DO 1 600
 +! 600 C@ . LOOP ;

Initialize $600 to zero and execute BUMP

 0 600 C!

 BUMP
 1 2 3 4 5 6 7 8 OK

4-31

Try it again but first initialize $600 to $10

 10 600 C!
 BUMP
 11 12 13 14 15 16 17 18 OK

Define another function UPBY6 to increment the memo ry contents by six and
display the results

 : UPBY6
 CR 8 0 DO 6 600
 +! 600 C@ . LOOP ;

Clear $600 contents and try it.

 0 600 C! OK
 UPBY6
 6 C 12 18 1E 24 28 30 OK

4.9.4 Exclusive-OR Memory Using TOGGLE

TOGGLE takes an address and a one-byte mask as argu ments; it does an exclusive-
OR between the byte and the address contents, updat ing the latter.

Experiment with TOGGLE by first initializing $600 t o $FO

 HEX OK

 FO 600 C! OK

TOGGLE the value

 600 55 TOGGLE OK

Print the result

 600 C@ . <RETURN> A5 OK

Note that both +! and TOGGLE could be performed otherwise using multiple
FORTH words, however, these words are convenient, a nd use less memory than
multiple definitions.

4-32

4.10 CONSTANTS AND VARIABLES

4.10.1 CONSTANT

The word CONSTANT creates a new FORTH word which returns a value to the stack
whenever it is executed. For example,

 50 CONSTANT X

creates a constant named X . When this new word i s executed, it will return 50
to the stack. Print the value of X with

 X . <RETURN> 50

Constants are commonly used to give names to values which are fixed parameters
in programs.

The same result could also have been accomplished b y using a colon-definition,

 : X 50 ;

But the former is more efficient in both memory use and run-time speed.

If it is necessary to change the value of a CONSTA NT in RAM before storage of
the program in ROM it can be done using the followi ng technique

 <new value> ' <name> @ !

For example, to change the 50 in the prior example to 78, use

 78 ' X @ !

check it now with

 X . <RETURN> 78

Note that trying to change the value of a constant, by putting a new definition
of the constant in the dictionary after compiling a word using it, will not work
since existing linkage to the prior value will not change.

4.10.2 VARIABLE

VARIABLE is like CONSTANT , but the word it creat es returns the address of a
value instead of the value itself. Therefore new va lues can be stored into the
variable. Try

 50 VARIABLE Y (Define variable Y, initi alize
 to 50)
 Y @ . <RETURN> 50 (Fetch and print Y)
 60 Y ! (Store 60 into Y)
 Y @ . <RETURN> 60 (Fetch and print Y)

4-33

Although this example illustrates the use of the wo rd VARIABLE to initialize
the value (to 50), the better practice is to always create the variable as zero
or some dummy value, and initialize if necessary in an initialization section of
the code. If the program is later moved to ROM, the variable location will have
to be in RAM, where it cannot be initialized at com pile time (see Section
4.10.4).

4.10.3 Defining Words

CONSTANT and VARIABLE are both in a special clas s of words called "defining
words". Defining words add new words to the diction ary. The only other defining
word we have seen so far is the colon used to begin colon definitions. As with
the colon, the names created by CONSTANT and VAR IABLE can be up to 31
characters long and can redefine other names.

The RSC-FORTH system includes eight defining words which are commonly used: the
colon, CONSTANT , VARIABLE , USER , VOCABULARY , CODE , <BUILDS ... DOES>
, and ;CODE . Each defining word is equivalent to a data type or class of
operations. Later we will learn how the user can cr eate entirely new data types
(new defining words) by using the special operation s <BUILDS ... DOES> or
;CODE .

4.10.4 USER

USER is a defining word which creates a different k ind of variable. A user
variable, like an ordinary variable, returns an add ress of where a value is
stored. But user variables store their values in a special "user area" which is
normally in RAM from address $300 through $37F; not in the dictionary (which may
be in ROM). (The name "user area" originated on la rge, multi-user FORTH
systems. Each user has a unique memory area for sys tem variables, e.g., the
number base currently in effect for that user, and the programmer's own
variables.) The user variables are defined in Appen dix G.

USER , like CONSTANT and VARIABLE , takes one ar gument from the stack, but
the argument is not an initial value; instead it is an offset from $300 into the
user area. For example,

 60 HEX USER A
 62 HEX USER B

creates two variables, A and B, with offsets of $60 and $62 bytes, respectively,
from the user variables base address at ($300). USE R is configured to allow
offsets of 0-255 ($FF).

Offsets between $54 and $60 should be used however, to place the USER variables
at $354 through $360. Note that offset values below 84 ($54) and particularly
above 96 ($60) may cause conflict with other system user variables, PAD , or the
Terminal Input Buffer (see Appendix G). Be sure tha t your assignment allows one
word (two bytes) for each user variable.

4-34

4.10.5 ALLOT

FORTH programs can use arrays, records, virtual arr ays (if mass storage is
available), and other data structures. The most el egant way to create such
structures is described in the chapter on user-defi ned data types. But a simple
method which is sometimes good enough uses VARIABL E and another word, ALLOT .

ALLOT takes one argument from the stack and leaves space for that many bytes in
the dictionary. For example,

 0 VARIABLE RECORD

creates a variable called RECORD ; two bytes are a vailable for the value.
Suppose 100 bytes are needed. Then

 0 VARIABLE RECORD 98 ALLOT

would create the variable RECORD and leave the 98 extra bytes for it.

Suppose RECORD were to be used for a customer name and address; the programmer
could create such operations as

 : LAST-NAME 0 + ;
 : FIRST-NAME 20 + ;
 : MIDDLE-INITIAL 30 + ;
 : ADDRESS1 31 + ;
 : ADDRESS2 51 + ;

Then

RECORD FIRST-NAME

would return the address of the start of the FIRST- NAME field.

In a similar manner, arrays can be generated and ma nipulated. To define an array
of 300 bytes, use

 0 VARIABLE ARRAY 298 ALLOT

To fetch the nth value of this array, one can use

 : GETN ARRAY SWAP 2 * + @ ;

Type

 41 GETN

to place the value of the 41st element onto the sta ck.

4-35

4.11 CHANGING THE NUMBER BASE

We have already seen the words DECIMAL and HEX , which set the number base to
10 and 16, respectively. FORTH can work in any numb er base (even above 16) but
in practice only 10, 16, 2, and perhaps 8 are commo nly used.

The number base can be changed by storing the desir ed base value into the user
variable BASE , which is available as part of the system. For example,

 2 BASE !

sets FORTH terminal input and output to binary. The user could define a word to
do this,

 : BINARY 2 BASE ! ;

and then later just execute

 BINARY

The words DECIMAL and HEX similarly change BAS E ; for convenience, these
words are already defined in the system as supplied .

Note that BASE only affects input and output. Int ernal computation is always
in binary so there is no computation-speed penalty for using different bases.
Also note that the base will remain as set until ch anged again.

You can easily determine the current I/O number bas e with BASE @ DUP DECIMAL .
The word @ puts the value of BASE on the stack. DUP duplicates the base
value for the later restore. DECIMAL converts the I/O number conversion base
to decimal and . prints the base and removes it f rom the stack.

If you need to check the base often, you can define a colon-definition word to
do it, such as

 : BASE? BASE @ DUP DECIMAL . BASE ! ;

When a colon-definition is compiled, the base in ef fect at compile time is the
one that counts. Notice that the following code is erroneous and fails to
compile:

 DECIMAL
 : MASK HEX 00FF OR ;
 00FF?

The 00FF is unrecognized because the base is decima l at compile time; the word
HEX does not change the base immediately (as was i ntended), but compiles as
part of the definition of MASK. It will change the base when MASK was
executed. The correct code is

4-36

 HEX
 : MASK 00FF OR ;
 DECIMAL

A possible source of confusion is the fact that in binary, the numbers 2, 3 and
4 (as well as 0 and 1) are correctly recognized on input. This happens because
the numbers 0-4 are so commonly used that they were made into constants to save
memory space. Since these common numbers are FORTH words in the dictionary, they
are recognized regardless of the number base in eff ect.

4.12 OUTPUT WORDS

4.12.1 Print Right-Justified with .R

We have already seen the word . (dot) used for pri nting numbers. Other
operators are available to output single-precision and double-precision numbers
left-justified and right-justified.

The word .R prints a 16-bit number right-justifie d in a field of a given
width. It takes two arguments, the number and the d esired field width; the
latter is on top of the stack. For example,

 4734 CR 26 .R CR
 4734
OK

prints 4734 right-justified 26 columns. Note the us e of CR to cause OK to
print on the following line.

Later (in Section 5.2.2) you will see that the corr esponding double-precision
(32-bit) output word D. prints a double-precision s igned number left-justified,
while D.R prints a double-precision signed number r ight-justified.

4.12.2 Output Spaces with SPACE and SPACES

The word SPACE outputs one space, and SPACES ta kes one argument from the
stack and outputs that number of spaces; such as

 CR ." TEXT1" 4 SPACES ." TEXT2" CR
 TEXT1 TEXT2
 OK

4.12.3 Output a Character with EMIT

Use the word EMIT to take the top stack number as an ASCII value and output
it. For example

 DECIMAL 65 EMIT

outputs A to the terminal.

4-37

Use EMIT in conjunction with the input word KEY (see Section 4.13.1) to
display an entered character. Try it with

 KEY <RETURN> <input character> OK
 EMIT "Entered character" OK

Note that the input character (from the keyboard) i s not output by the word KEY
— only by EMIT. Now, define one word to do both

 : ?KEY KEY CR EMIT CR ;

Check it with

 ?KEY <RETURN> A
 A
 OK
 ?KEY <RETURN> #
 #
 OK

Now try a few other characters of your own choice — try lower case letters also.

4.12.4 Output a String with TYPE

To display an ASCII string given its address and le ngth (length on top of the
stack), use TYPE . Try

 HEX 600 10 TYPE

which displays 16 bytes starting from HEX address 600.

This will convert whatever is in these locations to ASCII and output it — which
will display random characters and spaces until kno wn data is placed in these
locations.

Try it after first entering in string of data from the keyboard in RAM using the
word EXPECT (see Section 4.13.2).

 DECIMAL 600 40 CR EXPECT
 <character string> <RETURN> (if less than 40 characters)
 600 40 CR TYPE

Try it with a message of up to 40 characters. Note that if the string is less
than 40 characters, whatever is in memory between t he last entered character
through the 40th character will be converted and di splayed.

4.12.5 Prepare to Output a String with COUNT

Sometimes a string is stored as a length byte follo wed by the string itself, and
only the address of the string (of the length byte) is on the stack; this is an
alternate form for storing a string.

4-38

To convert from this form, the word COUNT takes t he address and returns the
arguments required by TYPE. Therefore,

 COUNT TYPE

displays a string given the address of its length b yte. Try the following

 HERE COUNT CR TYPE
 TYPE

More advanced output operations are discussed in Se ction 5.3, "Output
Formatting". These allow you to create your own out put formats which may include
such characters as decimal points, dollar signs, an d commas. More on string
handling is discussed in Section 5.4.

4.13 INPUT WORDS

FORTH handles input by taking all characters (token s) separated by spaces and
first trying to look them up in the dictionary. If the token is not in the
dictionary, the system tries to make a number of it , using the number base
currently in effect. Then if the token contains a n on-digit character, the
system reports an error condition by typing the tok en followed by a question
mark, indicating an unrecognized word (see Appendix E).

Most programs can use the FORTH system itself for t erminal input. You type the
numbers onto the stack and execute operations to us e them. Many programs run
without a terminal so no special input is needed. Y ou seldom need to write
operations to accept input from the keyboard, excep t for turnkey programs which
do not run under the FORTH interpreter (i.e., which do not give the 'OK' to the
user). When special input is required, several prim itive operations are
available.

4.13.1 Input a Character from the Terminal with KEY

The word KEY accepts a single character from the keyboard, returning its ASCII
value to the top of the stack. It is the opposite of EMIT (see Section
4.12.3). It is often used to accept a single-letter menu choice from the user.
The entry procedure is

 KEY <RETURN> <character>

Note that the entered character is not displayed. U pper or lower case letters
may be entered, however, FORTH words must be in upp er case.

Clear the stack with an undefined word, enter a cha racter, and check the entered
value on the stack.

 Q
 Q ?
 HEX KEY <RETURN> A (Type A)
 .S
 41

4-39

Notice the hexadecimal representation of the ASCII code for the entered number.
Change the I/O base to DECIMAL and check the value again

 DECIMAL .S
 65

Use EMIT now to output the numbers to the display .

 EMIT <RETURN> A

You can use the words KEY and . along with the I/O base to easily convert
the ASCII code for an entered character into the nu mber base of your choice.
This is especially useful if you do not have an ASC II/HEX/DECIMAL conversion
table handy.

To enter a number and display it in hexadecimal, us e

 KEY <RETURN> <input character> HEX .

To display an entered number in decimal, use

 KEY <RETURN> <input character> DECIMAL .

A word can easily be defined to display the entered number in both bases:

 : ASC
 KEY DUP DUP CR EMIT HEX . DECIMAL . ;

The input procedure is

 ASC <RETURN> <character>

Try it with a couple of numbers.

 ASC <RETURN> A (A will not be displayed)
 A 41 65
 ASC <RETURN> 1
 1 31 49
 ASC <RETURN> ?
 ? 3F 63

Experiment with a few other numbers and compare you r results with Appendix H.

4.13.2 Input a String from the Terminal with EXPEC T

The word EXPECT accepts a one-line string from th e terminal. EXPECT takes
two arguments from the stack, a starting address in RAM and a maximum length of
the input string; it returns no result to the stack . When executed, EXPECT
waits for the terminal input; it keeps accepting ch aracters until you press
<RETURN>, or until the maximum length is reached. N ote that EXPECT terminates
the input string with a null byte ($00); be sure t here is room for it in the
input area.

4-40

For example, use EXPECT to prepare to input 15 ch aracters, enter the data,
then dump the input data in hexadecimal which repre sents the ASCII code for the
input data (see Appendix H). After you type EXPECT , FORTH will wait for your
input — 15 characters maximum. Press <RETURN> to en d the input early. Notice
that the last byte dumped is the null byte.

 HEX 600 OK
 DECIMAL OK
 15 CR EXPECT
 1234567890123450K
 HEX 600 10 DUMP
 600 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 0
 OK

Use TYPE to display the input data as it was ente red:

 HEX 600
 DECIMAL OK
 15 CR TYPE
 1234567890123450K

Using the two preceding examples as a guide, set up an input of 40 characters
and display it in HEX and in ASCII.

4.13.3 Test for Character Input with ?TERMINAL

The word ?TERMINAL tests the terminal keyboard and leaves a true flag (1) on
the stack if any key is depressed. An example of a word that waits for a key
depression is

 : ANY-KEY? BEGIN ?TERMINAL UNTIL ;

4-41

This page is intentionally left blank.

4-42

SECTION 5

ADVANCED OPERATIONS

5.1 OTHER SINGLE-PRECISION ARITHMETIC OPERATIONS

There are other FORTH arithmetic words that perform simple operations. While
these words are not required for many elementary ar ithmetic operations, they
simplify implementation of more complex functions.

5.1.1 Modulus Operators MOD and /MOD

The word MOD takes a dividend (second on the stac k) and a divisor (top of the
stack), and leaves only the remainder of a division on the stack; for example,

 22 7 MOD . <RETURN> 1

The word "/MOD" ("divide-mod") leaves both the quot ient (top of the stack) and
the remainder (second on the stack), for example

 22 7 /MOD CR . .
 3 1

5.1.2 Absolute ABS and Negate NEGATE

To get the absolute value of a number use the word ABS. For example, take the
absolute values of both a positive and a negative n umber

 22 ABS . <RETURN> 22
 -22 ABS . <RETURN> 22

To reverse the sign of a number use the word NEGAT E. Negate both a positive and
a negative word; for example,

 -33 NEGATE . <RETURN> 33
 33 NEGATE . <RETURN> -33

5.1.3 Simple Increment and Decrement 1+ , 2+ , 1 - , 2-

Four words are included for convenience of incremen ting or decrementing a value
on the stack by one or by two. They are

 1+ ("one-plus") Increment by 1
 2+ ("two-plus") Increment by 2
 1- ("one-minus") Decrement by 1
 2- ("two-minus") Decrement by 2

5-1

Try the following examples,

 1 1+ . <RETURN> 2
 2 2+ . <RETURN> 4
 3 1- . <RETURN> 2
 5 2- . <RETURN> 3

5.1.4 Minimum MIN and Maximum MAX

When you wish to limit the range of number between a lower and upper value, the
words MAX and MIN will compare the values of th e top two numbers on the
stack and leave only the greater, or smaller number , respectively.

 1 2 MIN . <RETURN> 1
 -10 5 MIN . <RETURN> -10

 4 7 MAX . <RETURN> 7
 -10 5 MAX . <RETURN> 5

A word that will limit numbers to a range between 1 and 9 uses the following
colon-definition:

 : RANGE 1 MAX 9 MIN ;

For example:

 6 RANGE . <RETURN> 6
 1 RANGE . <RETURN> 1
 0 RANGE . <RETURN> 1 (0 is smaller than 1)
 9 RANGE . <RETURN> 9
 10 RANGE . <RETURN> 9 (10 is larger than 9)

5.2 UNSIGNED, MIXED AND DOUBLE-PRECISION ARITHMETIC

The FORTH stack is 16 bits wide, and the numbers we have seen so far are signed
values internally formatted in 2's complement binar y arithmetic. In this number
representation, bit 15 (the most significant bit) c ontains the arithmetic sign,
and bits 0 to 14 contain the numeric magnitude valu e. A '0' in the sign bit
indicates a positive number while a '1' indicates a negative number. A positive
signed 16-bit number may range from 0 ($0000) to 32 ,767 ($7FFF) while a signed
negative number may vary from -1 ($FFFF) to -32,768 ($8000). Signed values are
used most often for arithmetic calculations.

16 bits can also hold an unsigned number, where bit 15 is interpreted as an
additional order of magnitude rather than the arith metic sign. In this case, bit
15 represents a value of 32,768 (2^15) with the si gn implicitly positive. The
value of a 16-bit unsigned number may, therefore, r ange from 0 ($0000) to 65,535
($FFFF). Unsigned values are used most often for ad dresses.

5-2

5.2.1 Entering Double-Precision Numbers

RSC-FORTH also supports 32-bit (double-precision) 2 's complement numbers. These
are represented as two 16-bit numbers on the stack, with the high-order number
on top. Double-precision allows positive or negati ve decimal integers in the
range -2147483648 to 2147483647 to be used.

FORTH interprets an input number as double-precisio n if there is a decimal point
anywhere in it . The location of the decimal point does not affect the value of
the input number (although the number of decimal pl aces is saved in the system
variable DPL in case you need to know it, see Appen dix G). For example,
'555555555.' and '.555555555' are input as the same number — only DPL is
different. Input the following numbers in double-p recision format and display
the contents of DPL to check the number of decimal places in the input number:

 100. DPL @ . <RETURN> 0
 156.7 DPL @ . <RETURN> 1
 365.12 DPL @ . <RETURN> 2
 496.436752 DPL @ <RETURN> 6

Double-precision numbers are integers, with the dec imal point used only as a
flag to indicate double-precision; the programmer m ust keep track of any
implicit decimal point information.

Input the following small numbers in double-precisi on format and print out the
two 16-bit numbers that make up the number. Notice that the most significant
16-bits is zero for positive numbers and is -1 ($FF FF) for negative numbers
(consistent with 2's complement notation).

 456. . . <RETURN> 0 456
 23145. . . <RETURN> 0 23145
 -879. . . <RETURN> -1 -879
 -1289.4 . . <RETURN> -1 -12894

Change to hexadecimal and repeat the examples. Noti ce the difference since each
hexadecimal digit represents four binary bits.

 HEX
 456. . . <RETURN> 0 456
 23145. . . <RETURN> 2 3145
 -879. . . <RETURN> -1 -879
 -1289.4 . . <RETURN> -2 -2894

5.2.2 Printing Double-Precision Numbers

Now that you understand how double-precision number s are stored on the stack,
let's look at two FORTH words that print the data i n double-precision format.
The word D. (pronounced "d-dot") prints the top two numbers on the stack as a
32-bit number, left-justified. Repeat the previous examples in decimal.

5-3

 DECIMAL
 456. CR D.
 456
 23145. CR D.
 23145
 -879. CR D.
 -879
 -1289.4 CR D.
 -12894

It is often desirable to print the data right-justi fied. The word D.R
("d-dot-r") prints a double-precision number, right -justified in a variable
width field. The top number on the stack is the col umn in which the least
significant digit of the data is to be printed, whi le the second number is the
double-precision number (the data) to be printed. T ry the example data one
more time, but right-justify it in the 30-column fi eld as follows (if the
number prints in the wrong column, you forgot to sw itch back to decimal)

 456. 30 CR D.R
 456
 23145. 30 CR D.R
 23145
 -879. 30 CR D.R
 -879
 -1289.4 30 CR D.R
 -12894

Define a word to print multiple double-precision nu mbers right-justified 15
columns.

 : PRINT-RIGHT (N ---.)
 0 DO CR 30 D.R LOOP CR ;

Enter the data on the stack and print it with PRIN T-RIGHT . Place the numbers
and the number of items on the stack before calling PRINT-RIGHT .

 456. 23145. -879. -12894.
 4 PRINT-RIGHT
 -12894
 -879
 23145
 456

5.2.3 Other 32-Bit FORTH Operators

There are several other double-precision FORTH word s which are analogous to the
single-precision operations.

Double-precision add D+ ("d-plus") operates in th e same manner as + , except
it uses the top two double-precision numbers on the stack as inputs and leaves
one double-precision number, e.g.,

 3456. 6576. D+ D. <RETURN> 10032

5-4

DABS ("d-abs") returns the absolute value of a dou ble precision number similar
to the single-precision word ABS.

 -76543. DABS D. <RETURN> 76543

DNEGATE ("d-negate") changes the sign of the doubl e-precision number on the
stack, allowing subtraction.

 -768945. DNEGATE D. <RETURN> 768945

The word S->D ("s-to-d") converts a single-precis ion number on the top of the
stack to double-precision number.

 6758 DUP CR .
 6758
 S->D CR D.
 6758

The operation D+- ("d-plus-minus") applies the si gn of the single-precision
number on top of the stack to the double-precision number beneath it. Note that
a minus number on top always changes the sign of th e double-precision number
below. Note also that the single-precision number i s removed by the D+-
operation.

 56789. -78 D+- D. <RETURN> -56789

5.2.4 Unsigned Compare U<

Addition and subtraction are the same for signed or unsigned single precision
numbers so there are no special operations for thes e. Comparison is different,
however, so an unsigned compare word U< ("u-less- than") should be used instead
of the signed compare word < . Using < in a compari son where one number exceeds
32,767 will result in an incorrect answer. The comp arison

 20000 40000 < . <RETURN> 0

gives 0 (Boolean false), because 40,000 as a signed 16-bit number is negative
and is therefore less than 20,000. The comparison

 20000 40000 U< . <RETURN> 1

yields 1 (Boolean true) which is the correct result . Use U< to compare
addresses, unless you are sure both of them will be below 32,768, or both above
it.

5.2.5 Unsigned Multiply U* and Divide U/

Two other unsigned operations are provided. The uns igned multiply word U*
("u-times") multiplies two unsigned single-precisio n numbers to give an unsigned
double-precision number. For example,

 40000 40000 U* CR D.
 1600000000

5-5

The unsigned divide word U/ ("u-divide") divides an unsigned double-precision
number (second on stack), by an unsigned single-pre cision number (top of stack),
to give an unsigned single-precision quotient (top of stack) and unsigned
single-precision, remainder (second on stack).

The following example gives a positive quotient and unsigned remainder.

 120031. 4 U/ . . <RETURN> 30007 3

Note that another example,

 140035. 4 U/ . . <RETURN> -30528 3

appears to give a negative quotient and unsigned re mainder. In the single-
precision format a number between 32,768 and 65,535 is displayed as negative
unless printed as a double-precision number. The fo llowing example forces the
quotient to a double-precision number and prints it along with the remainder:

 140035. 4 U/ 0 D. . <RETURN> 35008 3

5.2.6 Mixed-Mode Operations M* , M/ and M/MOD

Some mixed-mode operations are also available. The operator M* ("m-times")
multiples two signed numbers and returns a signed d ouble-precision product. Two
examples illustrate the operation:

 4532 8765 M* D. <RETURN> 39722980
 4876 -5467 M* D. <RETURN> -26657092

The operator M/ ("m-divide") divides a double-pre cision number (second on
stack), by the single-precision number (on top of t he stack), and returns a
signed single-precision remainder (second on stack) and signed single-precision
quotient (top of stack). Try this example:

 564755. 500 M/ . . <RETURN> 1129 255

The word M/MOD ("m-divide-mod") divides a positiv e double-precision number
(second on stack) by a positive single-precision nu mber (top of stack),
returning an unsigned single-precision remainder (s econd on stack) and an
unsigned double-precision quotient (top of stack). Examine with

 54000. 5000 M/MOD D. . <RETURN> 10 4000

5.2.7 Scaling

Suppose you are working with 16-bit integers and wa nt to multiply one by a
scaling factor such as the sine of 45 degrees. Sinc e we are using only integers,
this sine value (0.7071) could be represented as mu ltiplied by 10000, i.e.,
7071. We want to multiply our number by 7071 and di vide it by 10000 — the
problem is that the intermediate product is too lar ge to represent as 16 bits ——
so FORTH provides an operation */ ("times-divide")

5-6

which multiplies the third term on the stack by the second item and then divides
the result by the top of stack item, while keeping a 32-bit intermediate
product. This is illustrated by

 12345 7071 10000 */ . <RETURN> 8729

Another operation */MOD ("times-divide-mod") perf orms the same operation but
also returns the remainder as the second number on the stack. Repeat the last
example but also print the remainder.

 12345 7071 10000 */MOD . . <RETURN> 8729 1495

5.3 OUTPUT FORMATTING

The numeric output commands described in Section 4. 11.1 are enough for most
programs. However, some applications need special f ormats such as decimal points
and dollar signs with printed numbers, or colons wi thin numbers to indicate
degrees, minutes, and seconds. FORTH includes speci al output operations which
let you define your own numeric formats.

5.3.1 S->D , <# , #S , SIGN and #>

To use these operations, first get a double-precisi on number on the stack. Then
a special operation <# ("less-sharp") starts nume ric conversion. Digits are
converted from the right, i.e., least significant d igit first. ASCII characters
such as decimal points and dollar signs can be adde d where needed. Then another
special operation #> ("sharp-greater") closes the conversion. Between the <#
and the #> a double-precision number from the sta ck is converted into a string
of ASCII characters representing the number's value . Depending on the program,
this conversion can be done a character at a time o r several characters at once.
The least significant digit is converted first and builds in memory starting at
PAD and moving down as the string grows.

For example, the following definition creates and t ests a word .PRINT , which
works like the print command . . This example illu strates a fairly simple case
with no added character.

 : .PRINT
 S->D SWAP OVER DABS
 <# #S SIGN #>
 TYPE SPACE ;

Enter a number to test .PRINT

 12345 .PRINT <RETURN> 12345

First, S->D converts the top stack number to doub le-precision. The SWAP OVER
, in effect, makes an extra copy of the high-order 16-bit part below the double-
precision number of the stack; this is required to preserve the sign information
since the numeric conversion itself requires a posi tive number — hence the
DABS.

5-7

The <# sets up the output conversion followed by the #S ("sharp-S") which
converts all digits of the number to ASCII. The SIG N word then places an ASCII
minus sign if necessary; it uses the extra copy of the high-order part of the
double-precision number to detect if that number wa s originally negative.

The #> closes the conversion, and leaves stack ar guments set up for TYPE —
i.e., the number of characters to type on top of th e stack, and the address of
the first one below it. The SPACE word leaves one space after the number to
separate it from the next one.

5.3.2 # and HOLD

Here is an example showing creation of a word D$. which prints a double-
precision number with decimal point and dollar sign . Besides the above
operations, it also uses # ("sharp") , which plac es a single digit into a
string being created. It also uses HOLD which tak es an ASCII value from the
stack and places that character into the number bei ng formed. Remember that the
string builds from the least significant digits fir st.

The following colon-definition shows how to convert digits, individually,
placing additional characters such as decimal point s and dollar signs where
desired within a number.

 DECIMAL
 : D$. (D ---)
 SWAP OVER DABS
 <# # # 46 HOLD (46 is the decimal point)
 #S 36 HOLD SIGN #> (36 is the dollar Sign)
 TYPE SPACE ;

The following examples show that the leading zeros are handled properly.

 555. D$. <RETURN> $5.55
 5. D$. <RETURN> $0.05

If three places after the decimal point were desire d, one additional # would
be necessary before the '46'.

Let's define another word that uses D$. to print multiple numbers

 : PRINT-D$.
 CR 0 DO D$. CR LOOP ;

Now put four numbers on the stack and print them

 123. 45678.
 3456. 23456.
 4 PRINT-D$. (Print four numbers)
 $234.56
 $34.56
 $456.78
 $1.23

5-8

The following word prints a mixed number when the i nteger double-precision
number is on top of the stack and the position of t he decimal point is held in
the user variable DPL .

 HEX
 : XN.
 SWAP OVER DABS (Set form for sign and
 conversion)
 <# DPL @ -DUP (Convert digits to righ t of
 IF 0 DO # LOOP THEN decimal point)
 2E HOLD #S SIGN #> (Convert decimal point and
 remainder of digits)
 TYPE SPACE ; (Print results)
 DECIMAL

Verify proper conversion with an example such as:

 34.786 XN. <RETURN> 34.786

5.4 STRINGS

FORTH does not have a standardized package of strin g-handling operators, but it
does have primitive operations from which string ro utines can be built. For many
applications the primitives themselves are enough. A series of string handling
functions that can easily be constructed in FORTH i s described in Appendix I.

Because there is no ready-made standard, you can de cide how to represent strings
internally. Two formats are already in use within t he system. In one, a length
byte is followed by the string itself; string lengt h cannot exceed 255
characters. The address of the string is the addres s of the length byte (this is
used to store names of words in the dictionary). I n the other format, only the
string itself is stored in memory; its address is t he address of its first
character. The length is stored separately, and ke pt above the string address
on the stack.

5.4.1 Address String Data with COUNT

The COUNT word returns the address (second on sta ck) of a character string and
the number of characters, e.g., bytes, in the strin g (top of the stack). The
character string can be up to 255 bytes in length. COUNT operates on the
address preceding the first byte of the character d ata which must contain the
number of bytes of the character data.

5.4.2 Output String Data with TYPE

The word TYPE takes the address of the first data byte (second on stack) and
the data byte count (top of stack) and outputs it t o the active output device.
TYPE is usually preceded by COUNT which sets up the data address and byte
count in a compatible format.

5-9

5.4.3 Input String Data with EXPECT

The word EXPECT (see Section 4.11.2) can be used to read a string into memory.
Unfortunately it does not return the actual length of the input string; however,
you can find this length if it is needed by searchi ng for the trailing nulls
(binary zero bytes).

5.4.4 Suppress Trailing Blanks with -TRAILING

To eliminate trailing blanks of a message, the word -TRAILING is used. If -
TRAILING is given an address of a string (second o n stack) and a count (top of
stack) such as that output by COUNT , then -TRAIL ING will adjust the count to
commands if necessary to eliminate any trailing bla nks in the string. For
example,

 HEX 9
 600 9 EXPECT <RETURN>

allows nine characters to be entered into memory st arting at $600. Enter

 ONLY5 (followed by four spaces)

immediately after the <RETURN> following EXPECT (note that OK will not be
displayed until after nine characters are entered). A five character message
with four trailing blanks is now in RAM. Check it w ith

 600 9 DUMP
 600 4F 4E 4C 59 35 20 20 20 20 0 XX XX XX X X XX XX
 OK

Notice the terminating null character ($0) placed a fter the entered data. Now
enter

 600 9 -TRAILING .S
 5 (character count less trailing blanks)
 600 (starting address)

To see the full message less trailing blanks, enter

 CR TYPE
 ONLY5 OK

5.4.5 Interpret a Number with (NUMBER)

Most of the words needed for terminal input are des cribed in Section 4.11. This
section covers the special situation of accepting a numeric string as input and
interpreting it as a number. Such special input is seldom necessary, because
most programs can accept input from the FORTH syste m itself (i.e., numbers typed
onto the stack), if they use a terminal at all. Thi s special terminal input is
most often for turnkey programs not run under the d irect control of FORTH (in
which the user should not see the OK).

5-10

First use EXPECT to accept a string from the user (see Section 4.11.2). Then
use (NUMBER) to interpret part or all of that str ing as a number (the
parentheses are part of the name). This operation is a bit complicated. It
needs a double-precision zero on the stack, as well as the address of the first
ASCII character of the number minus one, i.e., the address of one byte before
the number begins. This address must be on top of t he stack. (NUMBER) then
returns the value of the number; it is accumulated into the double-precision
zero. The address on top of the stack is increment ed to point to the first non-
numeric character, i.e., to the terminator of the n umber; the program may test
this terminator, which would normally be a blank, a nd if it is an unexpected
quantity, e.g., a letter erroneously typed by the t erminal operator, error
handling can be performed.

For example,

 : INPUT
 600 10 EXPECT 0 0 600 1 - (NUMBER) ;

defines a word

 INPUT

which when executed, accepts a number, returning th e address just beyond the
number, and the number itself in double-precision f orm (as two numbers on the
stack). (NUMBER) will not skip leading blanks or handle minus signs; you must
do so if necessary. By defining INPUT , you have h andled the difficult part of
(NUMBER) just once. Subsequent inputs can be proc essed easily by using the
INPUT word.

5.4.6 Input a Number with NUMBER

The word NUMBER (written without the parentheses) will handle leading blanks
and the minus sign. But if the string being convert ed is in error (e.g.,
contains alphabetic letters), FORTH will handle the error itself by echoing the
unrecognized string with a question mark; the user cannot get control to process
the error differently. Therefore the more primitive (NUMBER) is usually
preferred for turnkey applications.

5.5 DICTIONARY STRUCTURE

As you are well aware by now, FORTH consists primar ily of a dictionary of words.
The FORTH words were listed using VLIST in Sectio n 4 and are shown in Table 4-
1. This section describes the structure of the word s in the dictionary. RSC-
FORTH allows some very useful ways to manipulate th e dictionary, not found in
other FORTH systems. These unique features are dis cussed in Section 6.

5.5.1 FORTH Word Structure

The FORTH words are arranged one after the other, s tarting with LIT to TASK ,
followed by all user-created words. Each word is co mposed of six sections:

5-11

 . flag bits and name character count
 . name
 . link address
 . parameter field pointer
 . code address
 . parameter field

Here is a picture of the dictionary with a word exp anded with its sections:

The first byte of a word begins with the name field and contains the number of
characters in the word's name along with two flag b its:

The MSB is set to indicate the start of a name. The precedence flag indicates if
the word is for compile or immediate execution. The smudge flag prevents the
word from being found in the dictionary during comp ilation. If the compilation
finishes successfully, the smudge bit is reset to z ero allowing the name to be
recognized. "SMUDGED" words will show up in a VLIST , however. To eliminate a
"SMUDGED" word from the dictionary, toggle the "SMU DGE" bit by using the word
SMUDGE and then use FORGET to eliminate the word fr om the dictionary.

The name field continues with the ASCII characters of the name with the MSB of
the last character set to indicate the end of the n ame.

The link address is the address of the count byte o f the previous word (i.e.,
the beginning of the previous name field). This all ows the dictionary to be
scanned, word-by-word, beginning with the most rece nt word and moving back. The
last word in the dictionary has a link address of z ero.

5-12

The parameter field pointer is a two-byte pointer t hat points from the
dictionary portion of the definition to the actual code of the definition. This
field is unique to RSC-FORTH. It is this pointer th at allows RSC-FORTH to
operate with a separated kernel in ROM. This provid es the link from the
dictionary to the kernel. Note that there is no rec iprocal link from the kernel
back to the dictionary. This is done to save space in the kernel. This means it
is possible to use the PFAPTR to find the parameter field, but not vice versa.

The code address indicates the code to be executed depending on the type of
word, i.e.,

 code = $F874 for "colon-definition" words
 = $F8A0 for USER words
 = $F894 for VARIABLE words
 = $F889 for CONSTANT words
 = $F9C5 for DOES> words
 = next address for "CODE-definition" words

The parameter field changes meaning depending on ty pe of word. If the word is a
"colon-definition" word, the parameter field contai ns the addresses of the FORTH
words (their CFA's) that make up the definition. If the word is a "CODE-
definition" word then the parameter field contains the actual R6500 assembly
code for the logic to be performed.

Examine the TASK word; as an example,

 FORGET TASK OK
 : TASK ; OK
 HEX OK
 404 10 DUMP
 404 84 54 41 53 CB 3D 38 F 4 74 F8 17 F7 4 44 55
 OK

Now look at its component parts:

 404 84 (8 = MSB = 1 = start of a word)
 (4 = Number of characters in TASK)

 405 54 41 53 CB (ASCII characters for TASK with MSB)
 (of last character set to 1)

 409 3D 38 (Link address of $383D link s to ADMP)
 (word in the RSC-FORTH Deve lopment ROM)

 40B OF 04 (Parameter Field Pointer ad dress links)
 (to Parameter Field locatio n)

 40D 74 F8 (Code address of $F874 indi cates)
 (colon-definition)

 40F 17 F7 (Parameter address of $F717 indicates)
 (the end of a colon-defini tion,)
 (i.e., ';')

5-13

For both CONSTANT and VARIABLE words, the param eter field is two bytes long
and contains the value of the constant or variable. For USER words, the
parameter field is one byte long and contains the o ffset into the user area for
the USER variable.

5.5.2 Handling FORTH Word Addresses

There are five FORTH words concerned with finding t he address of the various
word fields. They are:

 ' (tick)
 PFAPTR (Parameter Field Pointer Address)
 CFA (Code Field Address)
 LFA (Link Field Address)
 NFA (Name Field Address)

a. ' leaves the parameter field pointer address (PFAPTR) of
 the word following it on the stack.

b. NFA converts the parameter field pointer addres s on the
 stack into the name field address (NFA).

c. LFA converts the PFAPTR into the link field add ress (LFA).

d. CFA converts the PFAPTR into the code field add ress (CFA).

e. PFAPTR converts the name field address (NFA) to the
 parameter field pointer address.

5.5.3 FORTH Word Handling Examples

To print the contents of LFA of CLIT , perform

 HEX
 ' CLIT LFA @ 0 CR D.
 202C

To print the name of LIT , perform

 ' LIT NFA COUNT 1F AND CR TYPE
 LIT

5-14

To print the topmost word name in the dictionary, p erform

 LATEST CR ID.
 TASK

A simple list of all words in the FORTH dictionary can be obtained with

 : DIR CR LATEST
 BEGIN
 DUP ID. CR
 PFAPTR LFA @ DUP
 0= UNTIL ; OK
 DIR <RETURN>
 DIR
 TASK
 .S (Press <RESET> to terminate list)

5.6 VOCABULARIES

Vocabularies are groupings of FORTH words. They are used to allow the same names
to be used for different operations in different ap plication areas. If a name is
redefined in the same vocabulary, only the latest d efinition will be accessible.
But, if the same name is used in two or more differ ent vocabularies, all the
definitions can be selected.

The RSC-FORTH system as supplied includes two vocab ularies: FORTH , which is
the default vocabulary, where the example definitio ns illustrated earlier in
this manual were all placed, and ASSEMBLER , which contains definitions of
R6500 instruction mnemonics, mode symbols, and othe r operations only used for
the assembler (See Section 6). For example, RSC-FOR TH has two words, 0= and 0< ,
which are defined in both vocabularies and used dif ferently (see Section 4.7.2
and 6.6) depending on which vocabulary is selected (see Section 6.1).

5.6.1 More on VLIST

As mentioned at the beginning of Section 4, you can list the FORTH vocabulary by
executing the word

 VLIST

Press any key to terminate the VLIST . VLIST can also be used to list the
words contained in the assembler vocabulary (see Se ction 6). Enter

 ASSEMBLER VLIST

which will print the ASSEMBLER vocabulary (and th en link to the FORTH
vocabulary and print that also). The FORTH link wor d (no name) is shown at
address $338 in the VLIST. Then it is wise to execu te

 FORTH

to set the vocabulary back to FORTH .

5-15

Vocabularies are effective only at compile time; th ey have no meaning after
object code has been compiled. They only affect the search for names of words in
the dictionary and have no bearing on headerless co de.

5.6.2 CONTEXT and CURRENT Specify Vocabularies

At any given time, two vocabularies are in effect: CONTEXT and CURRENT .
CONTEXT specifies the vocabulary in which dictiona ry searches begin, while
CURRENT gives the vocabulary into which new defini tions are placed. Often
CONTEXT and CURRENT are the same; e.g., when RSC -FORTH is initialized
(initial entry or COLD word), both of them point to the FORTH vocabulary. But
when a CODE-definition is being assembled, the CON TEXT vocabulary is
ASSEMBLER , while CURRENT is usually FORTH or som ething else (CURRENT would
be ASSEMBLER only if you were adding new capabili ties, e.g., macros, to the
assembler).

To set the CONTEXT , just execute the name of a vo cabulary; e.g.,

 ASSEMBLER

switches to the ASSEMBLER vocabulary. To set the CURRENT , the word

 DEFINITIONS

changes the CURRENT to the CONTEXT . So to chang e both of them to
ASSEMBLER , execute

 ASSEMBLER DEFINITIONS

Now any new colon-, CODE- , or other definition wil l go into the ASSEMBLER
vocabulary. Remember to get back by executing

 FORTH DEFINITIONS

after you are done extending the assembler.

Incidentally, any colon or other new definition wil l set CONTEXT back to
CURRENT . This is done to help the programmer avoi d errors. So if you are in
FORTH and then execute just

 ASSEMBLER

without DEFINITIONS , and then define any new words , they will go into FORTH ,
and also the CONTEXT will be set back to FORTH ; i.e., executing ASSEMBLER
alone will have had little effect.

5.6.3 Use LATEST and HERE to Check Directory Ad dresses

The word LATEST leaves on the stack the name fiel d address of the last word
pointed to by CURRENT . Do a COLD start and chec k the FORTH dictionary

 HEX LATEST <RETURN> . 404

5-16

The word HERE leaves on the stack the next availa ble dictionary address where
new words can be added.

 HERE . <RETURN> 411

5.6.4 Application Libraries

You can create your own vocabularies, in order to k eep different application
libraries separate from each other. Just execute

 VOCABULARY <name>

where <name> is the name (up to 31 characters) you want the new vocabulary to
have. Then you would usually say

 <name> DEFINITIONS

and begin putting your application library words in to the <name> vocabulary.

In the RSC-FORTH system, the new vocabulary will be linked to whatever
vocabulary it was created in (usually FORTH). All v ocabularies form a tree,
allowing sub-vocabularies nested to any depth. All vocabularies from CONTEXT
along the branching path back to the root of the tr ee (which is always FORTH)
will be searched whenever a name is entered into th e FORTH system for execution
or compilation.

To create a new vocabulary, use the word VOCABULAR Y along with the vocabulary
name to change CONTEXT to point to its last word, e.g.,

 VOCABULARY NEW

To add words to NEW, now type

 NEW DEFINITIONS

because DEFINITIONS sets CURRENT equal to CONT EXT allowing new words to be
added to the NEW vocabulary.

5-17

Now add a new word

 : MYWORD ." NEW VOC" ;

and type VLIST and get

 42C MYWORD 336 417 40B TASK
 3844 ADMP 3805 ;DUMP 37CF FORMAT 367E FMTRK
 3674 BANKEXECUTE 3664 BANKEEC! 3657 BANKC@ OK
 (<SPACE> bar pressed here)

Now type FORTH , this will set CONTEXT back to t he FORTH vocabulary and
MYWORD will not show up on a VLIST but it will e xecute.

Now type FORTH DEFINITIONS , changing both CURREN T and CONTEXT to the FORTH
Dictionary. Now MYWORD will not show up in VLIST and will not execute. To
use MYWORD one needs only to link the NEW vocab ulary to FORTH by typing NEW
.

It is generally recommended that use of sub-vocabul aries be avoided and all
user-defined vocabularies be created in FORTH. This is for compatibility with
many other FORTH systems which only allow one level of vocabulary nesting.

Vocabularies are optional, needed for advanced user s only. Most programs only
use the default FORTH vocabulary, and the programme rs do not even need to know
that vocabularies exist.

5.7 IMMEDIATE WORDS

Most FORTH words will be compiled, not executed, wh en they are used inside a
colon-definition. Immediate words are the exception . They are executed even at
compile time.

The words used for conditional branching and loopin g (e.g., IF , THEN , DO ,
LOOP , BEGIN , etc.) are all immediate words. They execute at compile time in
order to handle forward or backward branch referenc es, various error checks, and
other functions. Some of these words such as DO a nd LOOP place special run-
time words, not used directly by the programmer, in to the object code. But
some, (e.g., BEGIN) place nothing at all in the object code.

To define a new immediate word, use IMMEDIATE aft er its definition, i.e.,
after the semicolon. This causes the last word defi ned to be immediate.

On rare occasions the programmer must force compila tion of an immediate word. To
do this, use [COMPILE] (the brackets are part of the name before the immediate
word to be compiled.)

For example, suppose you want to run source code wr itten for an older version of
FORTH which used the name ENDIF for THEN (RSC-F ORTH supports both of these
words). You don't want to go through the code and m ake all the changes. It would
be wrong to define ENDIF by

 : ENDIF THEN ; IMMEDIATE

5-18

because the THEN would try to compute a condition al branch and cause an error
message because there is no corresponding IF . The correct form would be

 : ENDIF [COMPILE] THEN ; IMMEDIATE

This defines ENDIF to work the same as THEN .

5.8 CREATING YOUR OWN DATA/OPERATION TYPES

The RSC-FORTH system includes several 'defining wor ds'; that is, words which
create new words. The most important of those are: (the colon), CODE ,
CONSTANT , VARIABLE , USER , and VOCABULARY . The defining words C , CON
and CASE: are unique to RSC-FORTH and are discuss ed separately in Section 6.

You may want to create new defining words. In gene ral, each new defining word
creates a new type of data structure of operation. Examples might be ARRAY ,
MATRIX , CUSTOMERRECORD , and VIRTUAL-ARRAY . FO RTH assemblers use similar
structures for classes of instructions, such as one and two-byte addresses.

New data or operation types are usually created by the pair words <BUILDS and
DOES> ; these words are always used together. The word ;CODE is an
alternative way to create new data structures; they run faster but require use
of the assembler (see Section 6.9).

For example, suppose we want a word to create array s of 2-byte (16-bit) memory
locations numbered from zero. We want to say, e.g.,

 50 ARRAY X
 10 ARRAY Y

to create arrays 'X' and 'Y1 with 50 and 10 element s, respectively. Then we want
to use these arrays as

 0 X (0th element of ARRAY X)
 49 X (49th element of ARRAY X)
 0 Y (0th element of ARRAY Y)
 9 Y (9th element of ARRAY Y)

to return the addresses of the first (0th) and last elements of X and Y. We can
then use the arrays to store and fetch data using ! and @ . Note that there
are 50 elements in ARRAY X (numbered from 0 to 49) and, similarly, there are
10 elements in ARRAY Y (numbered from 0 to 9).

How do we define ARRAY to do this? We could use

 : ARRAY
 <BUILDS 2 * ALLOT
 DOES> SWAP 2 * + ;

How does this definition work?

5-19

The <BUILDS part tells what happens at compile ti me. The argument (on top of
the stack) to ARRAY (50 or 10 in the above exampl e) is multiplied by two, and
ALLOT leaves that many bytes of space in the dicti onary. Note that when
X or Y or any other array is being defined, the appropriate number of bytes
must be allotted for it.

The DOES> part tells what happens when X or Y is executed. At execution of
OX , 49 X , etc., DOES> automatically causes the system to place the address
of where the array begins on top of the stack; any arguments (0 , 49 or 9 in
these examples) are below that address. The SWAP b rings the array index to the
top of the stack, where it is multiplied by two to get its byte offset from the
beginning of the array. This offset is then added to the address of the array
to get the desired address of the particular elemen t.

To see how the allocation works, after entering the definition of ARRAY , type:

 DECIMAL HERE .

to see where the next dictionary entry will occur . Then enter

 50 ARRAY X HERE .

to how much dictionary space has been used by the a rray. Note that there are 10
bytes of overhead plus the 100 bytes for the array.

If you now enter

 10 ARRAY Y HERE .

you will see that 20 bytes of array plus 10 bytes o f overhead has been
allocated. Entering

 1234 5 X !

will now store 1234 in the fifth element in the X a rray. And entering

 5 X @

will now place 1234 on the top of the stack.

The data to go in an array may be loaded at compile time by the following
technique:

 : VECTOR <BUILDS 0 DO ,
 LOOP DOES>
 SWAP 2 * + ;

The data on the stack is in inverse order and the t op value on the stack is the
number of elements in the vector. Thus,

 Data(n-1) data(n-2) --- data(0)

 n VECTOR ALPHA

5-20

creates a vector with n elements called ALPHA . For example:

 55 4444 -33 2222 1111 0
 6 VECTOR ALPHA

Now check the element data

 3 ALPHA @ . <RETURN> -33
 0 ALPHA @ . <RETURN> 0
 2 ALPHA @ . <RETURN> 2222

These elements may be changed if so desired if the dictionary is in RAM, e.g.,

 1010 0 ALPHA !

Check with

0 ALPHA @ . <RETURN> 1010

In the definition of VECTOR , a loop is executed . the number of times indicated
by the top value on the stack. The only function pe rformed by the loop is to use
the , command to store the current top value of t he stack into the dictionary
entry. This is repeated until all of the vector ele ments are stored in the
dictionary definition. The remainder of the operati on is the same as the
definition. The remainder of the operation is the s ame as the prior example for
ARRAY .

<BUILDS and DOES> can be used to create much more elaborate data types such as
special array definitions which do bounds or other error checks at run-time.
These definitions could be used during debugging an d replaced with the regular
(faster) definitions for production use, once you a re assured that no out-of-
bounds error will occur.

5-21

This page is intentionally left blank.

5-22

SECTION 6

SPECIAL OPERATIONS

RSC-FORTH has many extensions not found in other st andard FORTH packages.
Basically these extensions can be grouped into five categories of new words;
system constants, new defining words, target compil ation/dictionary control,
disk interface and general utilities.

6.1 SYSTEM CONSTANTS

There are a number of significant addresses in RSC- FORTH corresponding to
microcomputer functions such as input/output ports, mode controls and serial
channel controls. These locations are of importance to the designer of RSC-FORTH
systems for dedicated applications since these desi gns usually require the
construction of I/O structures not covered by the u se of KEY and EMIT . A
list of these words is given with definitions in Ta ble 6-1.

These addresses are named in RSC-FORTH by a special type of defining word. Later
in this section it will be made clear that applicat ions which are programmed for
a target system must reference only words that are in the kernel. Referring to
a word not in the kernel will cause system failure when the R65FR1 Development
ROM is removed (addresses $C000 to DFFF set to $FF) .

Although none of these system addresses are actuall y defined in the kernel, they
may be used in the development of dedicated applica tion code. This is possible
because the defining word used to create the system constants interprets their
use differently when compiling. Used outside a colo n definition these words
perform exactly as constants do.

TABLE 6-1. System Address Constants

 Word Function Address

 PA Port A $0000
 PB Port B $0001
 PC Port C $0002
 PD Port D $0003
 PE Port E (only with R65F12) $0004
 PF Port F (only with R65F12) $0005
 PG Port G (only with R65F12) $0006
 IFR Interrupt Flag Register $0011
 IER Interrupt Enable Register $0012
 MCR Mode Control Register $0014
 SCCR Serial Communications Control Regi ster $0015
 SCSR Serial Communications Status Regis ter $0016
 SCDR Serial Communications Data Registe r $0017
 INTFLG High Level Interrupt Flag Register $004A
 INTVEC High Level Interrupt Vector $005B
 IRQVEC Low Level Interrupt Request (IRQ) Vector $0040
 NMIVEC Low Level Non-Maskable Interrupt (NMI) $0042
 Vector

6-1

For example, enter

 PB .

A 1 will be displayed. Port B is at address $0001. To see the value in Port B,
enter

 HEX PB C@ .

An FF will be displayed if Port B has not been modi fied since reset. A check of
the words in the kernel shows that PB is not one of them. The application
programmer can, however, access PB . The following definition does not cause
system failure when the Development ROM is removed:

 : PB? PB C@ . ;

The interpreter detects that PB is being used ins ide a colon definition and,
rather than compile the CFA of PB into the defi nition, instead, compiles a
primitive that indicates the byte following it is a constant to be put on the
stack and then puts the value of PB in the next b yte. This is exactly what
happens if you look up the actual address of Port B and use that number in the
definition. The following definition produces ident ical code to the previous
example

 : PB? 1 C@ . ;

Each of the system variables function In this fashi on.

6.2 DEFINING WORDS

6.2.1 Creating Address Constants with C,CON

The defining word used to create the system address constant is available for
general use. Its name is C,CON . It is used in t he same format as CONSTANT .
For example:

 12 C,CON TWELVE

causes a new system address constant to be added to the vocabulary. Unless you
are working with special cases of target compiled c ode, C,CON has no advantage
over CONSTANT . It should be noted that C,CON us es only byte values which
limits its use to zero page addresses.

6.2.2 Selecting Words with CASE;

The other new defining word of RSC-FORTH is very us eful. There are many
instances when a program needs to perform one of se veral actions based on a
known condition. For instance, programs are often r equired to perform one of
several possible functions when an operator pushes a key. The defining word
CASE: allows a very compact structure to be easily constructed. When a word
defined with CASE: is executed, a number is taken from the stack and is used
to pick that numbered word from the definition and execute it.

6-2

To illustrate the use of CASE: , assume that sever al possible functions are
already defined: UP , DOWN , LEFT , RIGHT , TO , and FROM . A selective
case structure could be built by defining as follow s:

 CASE: MOVE-IT UP DOWN LEFT RIGHT TO FROM ;

Assuming the names of the functions imply their act ions, an entry of 0 MOVE-IT
causes an upward movement (using UP) and 2 MOVE-IT causes a movement to the
left (using LEFT). When used in a large definition , an operator could push a
coded key to evoke the desired response. The defin ition could be as follows:

 : MOVE-LOOP BEGIN KEY 30 - MOVE-IT AGAIN ;

MOVE-LOOP makes it possible for you to enter the k eys 0 through 5 and command
movements up, down, left, right, to and from repeat edly, one per keystroke.
A word of caution when using a CASE: definition i s needed. CASE: performs no
error checking on the entries made into the list. A n entry other than 0-5 in the
last example would in all probability cause system failure or, at a minimum,
undesired side effects. Error checking was omitted from interpreter in CASE:
to save room, increase the operating speed and give the programmer maximum
flexibility. Error checking can easily be accomplis hed as in the following
expanded definition of MOVE-LOOP:

 : MOVE-LOOP BEGIN KEY 6 OVER U< IF MOVE-IT EL SE . . "?" THEN AGAIN

More elaborate forms of error checking are also pos sible.

The code that interprets CASE: definitions is its elf the product of a <BUILDS
DOES> structure. The DOES> portion, the interpr eter, is actually in the
kernel. Therefore, even though CASE: is not in t he kernel, words defined with
CASE: can be used in standalone, target compiled s ystems without the support of
the Development ROM.

6.3 TARGET COMPILATION/DICTIONARY CONTROL

Although FORTH code by its very nature is compact, it is often desirable to
compress code even further by target compilation. T he process of target
compilation in conventional FORTH systems usually i mplies a disk to disk
operation. The compiling program supplies a runtim e kernel of fixed size
(usually 2K to 5K bytes). FORTH structures are the n compiled onto the kernel
from FORTH source code on disk screens. Since the o perating target compilation
program itself is so large the resultant program ge nerally is assembled on disk.

More advanced target compiling systems are not limi ted to fixed size kernels.
These programs generate a new kernel that contains only the functions required
by the application dictionary. The finished program is usually much smaller, on
the order of 2K bytes for a simple program. The com piling program is much more
complicated and takes more memory in the compiling system and a much longer time
to compile.

6-3

6.3.1 Headerless Code Generation

The RSC-FORTH system has an advanced method of FORT H target compilation. You
have the option when your code is entered of select ing either in-line dictionary
code or target compiled code with separated diction ary headers. The latter is
called "headerless" code. The unique field called t he PFAPTR relieves RSC-FORTH
from having its dictionary header information (head s for short) in line with its
code portion (codes for short). The RSC-FORTH kerne l in ROM inside the R65F11 or
R65F12 single chip computer (or RSC-FORTH-ROM) is a lways available and need not
be added as overhead to the target compiled system. Simple programs can be made
as small as a few hundred bytes. As long as the ope rator is careful not to write
definitions referring to words outside the kernel t he resultant program can
stand alone. The R65FR1 Development ROM will not be needed in the final system.
See Table 2-1 for a list of kernel words. Programs that do not need external RAM
can be installed in target systems consisting only of the R65F11 or R65F12, a
74LS373 and the program in a ROM or EPROM. Program s that require the use of the
disks or serial channel will need one additional RA M chip and decoding to hold
buffers, etc.

Unlike other FORTH systems, the dictionary informat ion is not lost in target
compilation, but rather is stored in separate memor y. It, too, may be saved if
desired. This can be an invaluable feature for deb ugging the compiled program.
Since the target compiled program can be run direct ly, in whole or in parts,
when the dictionary is still present, thorough test ing is possible. The code is,
however, in final format and requires no changes be fore storage in PROM or ROM.

The option of using the target compilation features is totally at the discretion
of the user. Either way, after target compilation is set up, there is no
detectable difference in the operation of the RSC-F ORTH system. There are
basically three reasons to choose target compilatio n. The most obvious is to
save room in the target storage ROM. Another desira ble feature is that target
compilation provides an immediate level of program security. Only the most
sophisticated program pirates will be able to recon struct program flow without
the dictionary header information, and even then th ere will be a severe penalty
in time required to decompile the target code. Fina lly, by selectively target
compiling some words and normally compiling others, a limited vocabulary can be
created. Other languages can even be written in FO RTH.

The programmer has complete control over the state of compilation. A system
variable called HEADERLESS contains a Boolean val ue determining if the words
entered are either normal or target compiled. When HEADERLESS is zero, normal
codes with heads are generated. When HEADERLESS i s a one, codes are generated
in one memory area, controlled by DP , and heads i n another, accessible by
reference to DP/ .

6.3.2 Target Compilation with H/C

Normally, direct reference to HEADERLESS is not r equired. The word H/C
initiates the entire target compilation process. H/ C forces a Boolean one into
HEADERLESS and takes one user-supplied number from the stack to be the memory
location where the heads are generated. It then di splays the address
HEADS/XXXX on one line, where XXXX is the addres s of heads dictionary, and

6-4

CODES/YYYY on the next line, where YYYY is the a ddress codes dictionary. XXXX
is the same as the operator supplied number and is displayed for verification.
YYYY is the value of DP at the time H/C is exe cuted.

In effect, using H/C creates two dictionaries, on e for heads and one for the
codes. With such an arrangement additional dictiona ry control words are needed
to access both memory files. The words DP , HERE , ALLOT and , are
sufficient for normal FORTH code. Their counterpart s added for headerless code
dictionary control are DP/ , HERE/ , ALLOT/ and ,/ . When HEADERLESS is a
zero, these words have exactly the same effect as t heir counterparts. When
HEADERLESS is a one, these words work on the heads dictionary instead.
To test the effects of the above words, try the fol lowing examples. First,
after reset, run a short VLIST .

Now, find the end of the dictionary:

 HERE . <RETURN> 411 OK

Remember HERE is defined as DP @ , so

 DP @ . <RETURN> 411 OK

has the same effect. Before beginning target compil ation, verify the operation
of DP/ and HERE/ to be the same as DP and HE RE .

 DP/ @ . <RETURN> 411 OK
 HERE/ . <RETURN> 411 OK

If you begin target compilation now, TASK will be left in the codes dictionary.
Temporarily drop TASK from the dictionary:

 FORGET TASK

Begin target compilation by specifying a heads dict ionary address:

 HEX 600 H/C

Now add TASK back to the dictionary with a colon definition and run a short
VLIST .

 607 TASK 3844 ADMP 3805 ;DUMP 37 CF FORMAT
 367E FMTRK <RETURN> OK

Note that the VLIST shows the PFAPTR of TASK to be at $607. Displaying the
CFA of TASK shows where the actual code is in me mory:

 ' TASK CFA . <RETURN> 404 OK

6-5

You can verify that HEADERLESS is indeed a true v alue now and test the
functions of the dictionary control words mentioned above:

 HEADERLESS ? <RETURN> 1 OK
 DP ? <RETURN> 408 OK
 DP/ ? <RETURN> 609 OK
 HERE . <RETURN> 408 OK
 HERE/ . <RETURN> 609 OK

Examining memory at $400 and $600 with the DUMP c ommand can be useful. The
breakdown of the two memory spaces is as follows:

It is evident here that the codes are being generat ed at the $400 memory space
and the heads at $600. By this example and comparis on of the two memory sections
it should be clear that target compilation can save a great deal of space in
codes area.

6.3.3 Codes Versus Heads Dictionary Words

In the target compile mode (HEADERLESS contains a one) ALLOT provides free
space in the codes area while ALLOT/ reserves byt es in the heads dictionary.
Similarly, , puts a 16-bit value in the codes are a whereas ,/ puts a 16-bit
value in the heads dictionary. Any of these words m odify the system variables at
the addresses of DP and DP/ . The physical addr esses of DP and DP/ are
adjacent in memory.

 DP . 32A <RETURN> OK
 DP/ . 32C <RETURN> OK

The words ending in "/" simply use DP plus two if HEADERLESS is non-zero.

6-6

6.3.4 Move a Definition from Codes to Heads with H WORD

A useful dictionary control word, HWORD , picks up a definition from the target
codes area and places it in line in the heads dicti onary. HWORD works on the
last definition entered. Try entering HWORD now. Since the last entry was
TASK , the code for TASK will no longer be in the codes area. This can be
verified by checking its CFA:

 ' TASK CFA . <RETURN> 609 OK

HWORD is often useful for moving the code for a te st word out of the target
area. PROM programmer loops and other utilities can likewise be picked out of
the codes area before final preparation for a ROM c ode.

The question of whether a particular word is in or out of the kernel can be
quite important when preparing target standalone pr ograms. No references can be
made to words defined in the Development ROM if the program is to stand alone.
Checking the CFA of a word to be used in a definiti on can be tedious. The word
?KERNEL followed by a word name performs a quick c heck. ?KERNEL responds with
a simple IN or OUT message, indicating location.

6.3.5 Preparing for Autostart

After a program is target compiled and thoroughly t ested, just prior to being
transferred to EPROM, you may want to prepare it fo r autostart of your program
on power on reset. In order to do this, a $A55A pat tern must be placed on a 1K-
byte boundary followed by the PFA of the word to be started. This will usually
be the first four bytes of your final EPROM. The wo rd AUTOSTART was added to
RSC-FORTH to simplify the process. To use AUTOSTA RT the address of the 1K-
boundary being used must be on the stack. AUTOSTAR T should be followed by the
high level FORTH word that defines the entire proce ss to be run. A strong word
of caution is in order: AUTOSTART should be used with care. Once it is
executed, there is no way to return the Development ROM using a reset.

Try the following example to see AUTOSTART in actio n. First, start fresh by
entering COLD . Then type:

 FORGET TASK HEX 600 H/C <RETURN>

Notice that the codes are listed starting at $404. This is because at reset RSC-
FORTH reserves the first four bytes at $400 for an autostart vector to be added
later. Now enter this program:

 : PROGRAM 0 BEGIN 1+ DUP . <RETURN> AGAIN ;

Test the program by entering PROGRAM but be ready t o press reset because this is
an endless loop. PROGRAM displays all the possibl e numbers, starting from 1.
Now, prepare PROGRAM for autostart by entering

 400 AUTOSTART PROGRAM <RETURN>

6-7

This sets up the autostart pattern in memory $400. Look for the autostart
pattern by performing:

 400 20 DUMP <RETURN>

Now press reset. PROGRAM will run automatically. I n fact, the only way to stop
PROGRAM from running is to turn off power and turn it on again. This will
cause a cold reset of the Development ROM. PROGRAM was an example of a
dedicated application control program. Although it has no real world
application, it nicely demonstrates target compiled , autostarting code.
PROGRAM took only 16 bytes in code.

6.4 DISK INTERFACING

Perhaps the most unique feature of the RSC-FORTH Ke rnel is the built-in floppy
disk handler. This firmware allows a RSC-FORTH Micr ocomputer to control up to
four quad-density 5-1/4" or 3-1/2" disk drives with 2.4 megabytes of on-line
virtual disk memory. The words inside the kernel ar e designed to read or write a
1K-byte block in memory either from or to the flopp y disk drive.

As is common with most FORTH systems, all mass stor age is designated in groups
of bytes called "blocks". Each block on the disk ha s an identifying number.
Blocks are labeled from zero to "n-1", where n = (n umber of blocks per side) x
(number of sides per disk) x (number of disks).

6.4.1 High Level Mass Storage Words

The higher level words used for mass storage all ev entually refer to a word
that, internally, calls the appropriate disk handle r primitives. The word is
R/W and has no function other than to pass control from the calling routine to
the disk handler via a vector contained in UR/W . The higher level mass
storage words of RSC-FORTH, such as LOAD , BLOCK , BUFFER , etc., are
contained in the R65FR1 Development ROM. R/W is t he last word outside the
kernel. All the disk handler primitives are contain ed in the kernel.

UR/W is a system variable in the kernel that is in itialized to point to DISK .
R/W does not remove any parameters from the stack, but expects to be passed
three numbers. The lowest of the three on the stac k is the memory address to be
used, the second is the block number of the data on disk and the top is a
Boolean value telling whether to read or write. To read block 20 from the disk
into memory location $800, an entry of

 HEX
 800 20 1 R/W

has the same effect as

 800 20 1 DISK

DISK initiates the correct sequence of events to a ccess the disk using the four
lower level disk handling words SELECT , SEEK , DREAD and DWRITE .

6-8

6.4.2 Disk System Variables

There are three system variables that are very impo rtant to disk operations;
DISKNO , CYLINDER and B/SIDE . DISKNO holds t he number of the last disk
selected. This is used as an index when looking int o CYLINDER . These are
actually four bytes reserved in CYLINDER , one byt e for each disk. The track
last used on each disk is recorded in its correspon ding byte. The variable
B/SIDE holds the number representing the number of 1K-byte blocks per side of a
disk. The default value of B/SIDE is 360, for a q uad-density disk. The disk
handlers will work with double- or quad-density dis k drives.

By the number of the block passed to it, using B/S IDE , DISK computes the
number of the drive to be selected. That number, be tween zero through three, is
passed to SELECT . SELECT turns on the motors, i f necessary, and waits for
them to come up to speed. The active disk drive num ber is stored in DISKNO .

DISK calls SEEK after the appropriate drive is s elected. SEEK is passed to
the number of the track which contains the data. If the number for the current
disk track stored in CYLINDER is out of range, SE EK will recalibrate before
trying to attain correct head positioning.

After the correct disk is selected and the head has been moved over the desired
track, DISK calls either DREAD , if the Boolean value passed to it on the top
of the stack is a one, or DWRITE , if it is a zero . Both DREAD and DWRITE
are passed the original memory address which was pa ssed to DISK , and the
number of the 1K-byte group of multiple sections to read. Since there are 16
sectors per track, that number will be zero through three.

The word INIT sets all disk drive track informati on in CYLINDER to $FF's in
order to force recalibration if so chosen by the pr ogrammer.

An error on READ or WRITE will cause the displa ying of an error message and
return to the calling routine. If more elaborate er ror handling or other mass
storage techniques are desired, it is up to the pro grammer to write his, or her,
own versions of these primitives. Control can be ta ken from these routines by
modifying the vector in UR/W .

The words SELECT , SEEK , DREAD , DWRITE , DIS K and INIT are all in the
kernel. The variables DISKNO , CYLINDER and B/S IDE are not, but are
referred to where needed by actual address in page 3.

6.5 GENERAL UTILITIES

6.5.1 Formatting a Disk

A number of words best described as utilities have been added to RSC-FORTH to
allow more complete use of the facilities of a sing le chip application. Two are
directly related to disk operations.

The code required to format a disk is quite extensi ve, over 300 bytes. For that
reason the format routine is not in the kernel, but in the Development ROM
instead. FORMAT formats a complete disk on both s ides. Two parameters must be
passed to FORMAT , the drive number to format on t he top of the stack

6-9

and the number of tracks to format second on the st ack. FORMAT calls a lower
level primitive FMTRK which formats a single trac k. Although it is doubtful
that many will use this primitive directly, it is a vailable for execution.

6.5.2 Screen Modification

Although most standard FORTH systems allow examinat ion of mass storage by block,
with words like LIST , INDEX and .LINE , few, i f any, have words that allow
the blocks to be modified. Normally you must load a screen editor to perform
such functions. RSC-FORTH has a utility word added to allow simple screen
modification directly. The word is >LINE (pronoun ced "to-line"). To use >LINE
, first list a screen (this has the same meaning as showing a block). Any line
on that screen can be replaced by typing the line n umber and >LINE followed by
a carriage return. >LINE then accepts up to 64 cha racters from the terminal and
places them on the screen at the specified line.

6.5.3 Dumping a Memory Block

A pair of high and low level utility words are ADM P and ;DUMP . ADMP causes
the system to dump the contents of a memory block i n a standard format to the
system terminal. Data can be transferred to one of several commercially
available PROM programmers for permanent storage. I n this format, every record
begins with a semicolon followed by a two ASCII cha racter representation of the
number of bytes (in hex) in this record. Next is th e four ASCII character number
starting address (in hex) for this record. The ind ividual bytes follow, each
byte represented in the form of two ASCII character s as the hex value. A 16-bit
checksum is sent as the final field with four digit s (in hex). Multiple records
are sent until all of the memory designated is dump ed. A final record is sent
with zeros for the number of bytes (in hex) and add ress and a final total 16-bit
checksum (in hex). This is the same format used by the AIM 65, AIM 65/40 and
KIM-1 Microcomputers for a memory dump.

The primitive used by ADMP to output an individua l record is ;DUMP . Both
words are easily exercised. ;DUMP requires two pa rameters from the stack, the
starting address and the number of bytes to dump. T o test it try dumping a
record that contains the first few bytes of the Dev elopment ROM with DUMP and
;DUMP .

 HEX CR 2000 10 DUMP
 2000 5A A5 6E 2C FF FF FF FF 40 1 F8 17 0 20 0 0
 OK

 CR 2000 10 ;DUMP
 ;1020005AA56E2CFFFFFFFF4001F817002000000735
 OK

6-10

Now try ADMP over a larger area of memory. ADMP requires a starting and
ending address.

 2000 207F OK
 ADMP
 ;1820005AA56E2CFFFFFFFF4001F817002000001F0000 00040411040779
 ;182018000000003C0381A00404000081AOC73F36034E 2C834C49D0467E
 ;182030000010F484434C49D42C205AF4874558454355 54C53420730917
 ;182048F4864252414E43C83D2082F487304252414E43 C8492099F40AD6
 ;18206086284C4F4F50A95420B1F487282B4C4F4F50A9 6020D2F4840AC9
 ;08207828444F196B20FAF4047D
 ;0000070007
 OK

6.5.4 Using EEC! to Program a PROM (works only with R65F11 and R65F12)

Although it may be quite convenient to use commerci al PROM programmers for
permanent program storage, particularly when the pr ogram is large in respect to
the addressing space available on the R65F11 or R65 F12, they are expensive and
not always readily available. It is possible to use the R65F11 or R65F12 to
"program EPROMs or EEROMS directly in-circuit. The word EEC! accomplishes this
for a single byte at a time by manipulating the add ress and data bus to be
stable for the period required for programming. In fact, a Rockwell 5213/2816
EEROM can be programmed directly in a socket withou t extra programming voltages.
To program PROMs that require a larger programming voltage (VPP) than +5V, a
minimal amount of external hardware must be added t o apply VPP to the device
during programming. The 2764 variety PROMs have a s eparate VPP pin and are
easily handled. The 2732 family has a combination VPP and OE pin and requires
more elaborate circuitry to multiplex the normal OE TTL signal and VPP. The 2716
family is very difficult to program because the pro gramming pulse is positive
going and not readily generated with R/W alone.

Three parameters must be supplied to EEC! . The f irst (lowest on the stack) is
the data byte to be put in PROM, followed by the ad dress that it is to be
programmed into. The top value on the stack is the number of clock cycles to
hold the bus stable while the PROM programs. For ex ample, assume that a Rockwell
5213/2816 EEROM is in a socket previously set up an d tested for a 6116 type RAM
device. Chip select is generated by decoding the ad dress bus when EMS is low.
Output Enable (OE) is the logical NAND of � 2 and R/W. The 2K-byte device is
located at address $0800. In order to program the s econd byte with a $55 pattern
the following entry is required:

 HEX 55 801 DECIMAL 10000

The 10000 assumes a 1 MHz clock to give a 10 millis econd programming pulse.
In order to transfer an entire program from RAM at address $400 to EEROM at
address $800 a small programming word must be enter ed.

 HEX
 : MOVE-TO-PROM 800 400 DO I C@ I 400 + 2710 E EC! LOOP ;

6-11

MOVE-TO-PROM runs a loop from $400 to $7FF, picking up bytes and programming
them at addresses $800 to $BFF. The data is held st able for $2710 (10000) clock
cycles. Similar words can be made for about any pr ogramming requirement using
EEC! .

6.5.5 Bank Switching

Most dedicated applications will find the 16K-byte addressing range of the
R65F11 and R65F12 to be quite sufficient. Occasiona lly there will be designs
that require even more space. For these occasions R SC-FORTH has four words that
can be used to bank switch the external memory map to give a virtual memory
capability of nearly four megabytes. To accomplish this, Port B must be used as
upper address lines.

The bank switching words allow a byte to be fetched from a particular bank,
stored in a particular bank, and programmed into PR OM in a particular bank. A
word in another bank can be executed, also. Unlike most other bank switching
schemes, these bank switching words alter the bank port during operation, but
return to the original calling bank upon completion . Although this takes more
processor time, the programming of bank functions i n high level is greatly
simplified.

The bank switching words BANKC! , BANKC@ , BANKE EC! and BANKEXECUTE are
all in the kernel and can be used in standalone app lications. The function of
each of these words is identical to its non-banking namesake except one
additional parameter tops the stack. That is the nu mber of the bank to perform
the action on. For instance

 1234 6 BANKC@

fetches the contents of location 1234 in bank 6 and returns its value to the
stack. The entry

 22 1234 6 BANKC!

places a byte value of 22 at memory location 1234 i n bank 6. When working with
large programs that make it difficult to have the D evelopment ROM, the target
program in RAM and a PROM in the memory map at one time, BANKEEC! may be
invaluable. After the program is complete, it can b e programmed into PROM in
another bank with no problem of address translation . The programming word shown
here could transfer all the program in RAM from $40 0 right up to the Development
ROM to a 2764 in bank 1:

 : BANK-PROM 2000 400 DO I C@ I C350 1 BANKEEC ! LOOP ;

Note that $C350 was used for the cycles to program because the 2764 requires 50
milliseconds per byte.

Once programmed, the word can even be tested by cal ling the main word while
still in the PROM in bank 1. Assume the word to be tested is RUN , then test it
with:

 RUN CFA 1 BANKEXECUTE

6-12

Caution should be observed concerning system variab les unless RAM has been
provided and initialized at $300 in bank 1.

Bank 256 ($FF) is the main bank since this is the v alue of Port B at reset. In
order for bank switching to work, Port B must be us ed in the chip select
decoding of all memory chips, or the "window" in wh ich the bank switching can
occur must be limited to those in which it is.

6.5.6 Specifying Top of Memory

Finally , MEMTOP is provided to initialize the val ues of FIRST and LIMIT if
it is not a full RAM system. Note that LIMIT is $ 2000 and FIRST is $17F4 at
power on. These can be changed by entering

 n MEMTOP

where n is the last location of RAM available plus one.

6-13

This page is intentionally left blank.

6-14

SECTION 7

RSC-FORTH ASSEMBLER

The RSC-FORTH structured assembler allows the creat ion of machine language
procedures that may be more time efficient than if defined in high-level FORTH
colon-definitions. A separate ASSEMBLER vocabular y provides the op-codes,
addressing modes, conditionals, and other support w ords necessary to program
functions in R6500 assembly language. A function wr itten in assembly language is
entered into a vocabulary in a similar manner as a FORTH colon-definition. It is
also executed in the same manner by referring to th e word name. It is
recommended that assembly language, or "code", as i t is often referred to in
FORTH terminology, be structured and written simila r to high-level FORTH for
clarity of expression. A function can first be rapi dly written and debugged in
FORTH, tested for proper operation, and then recode d in assembly language for
faster execution with a minimum of restructuring.

7.1 THE ASSEMBLY PROCESS

The RSC-FORTH assembler vocabulary is selected by t he word ASSEMBLER or by the
word CODE (explained in the following paragraphs) . A separate ASSEMBLER
vocabulary is linked ahead of the FORTH vocabulary. The words in the ASSEMBLER
vocabulary are defined in Appendix D, RSC-FORTH Ass embler Glossary, in ASCII
sort order.

To examine the assembler words, perform a cold star t, command ASSEMBLER , and
run a VLIST . The Assembler VLIST is shown in F igure 7-1. Note that the
ASSEMBLER VLIST continues into the FORTH vocabular y upon completion of the
ASSEMBLER word list. Press any key to terminate th e VLIST before completion.

Code assembly consists of interpreting entered word s with the ASSEMBLER
vocabulary as CONTEXT (see Section 5.6.2). Thus, each word in the input stream
is matched according to the FORTH practice of searc hing CONTEXT first, then
CURRENT .

The vocabulary search order is:

 Order Vocabulary

 1 ASSEMBLER (Now CONTEXT)

 2 FORTH (Chained to ASSEMBLE R)

 3 User's Vocabulary (CURRENT if one exit s)

 4 FORTH (Chained to user's v ocabulary)

 5 Literal Number

The above sequence is the usual action of FORTH's t ext interpreter, which
remains in control during assembly.

7-1

3FDC END-CODE 3FCB 0< 3FC0 0= 3 FB5 VS
3FAA CS 3F9B NOT 3F73 ELSE, 3 F63 THEN,
3F37 ENDIF, 3F1E IF, 3EFC REPEAT, 3 EE6 AGAIN,
3ECD WHILE, 3EAC UNTIL, 3E99 BEGIN, 3 E79 BITCLR
3E4B BITSET 3E29 RMB, 3DF1 8MB, 3 DE1 BIT,
3DD1 JMP, 3DC1 JSR, 3DB1 STY, 3 DA1 LDY,
3D91 LDX, 3DB1 CPY, 3D71 CPX, 3 D61 STX,
3D51 ROR, 3D41 ROL, 3D31 LSR, 3 D21 INC,
3D11 DEC, 3D01 ASL, 3CF1 STA, 3 CE1 SBC,
3CD1 ORA, 3CC1 LDA, 3DB1 EOR, 3 CA1 CMP,
3C91 AND, 3C81 ADC, 3C73 TXS, 3 C65 TYA,
3C57 TXA, 3C49 TSX, 3C3B TAY, 3 C2D TAX,
3C1F SEI, 3C11 SED, 3C03 SEC, 3 BF5 RTS,
3BE7 RTI, 3BD9 PLP, 3BCB PLA, 3 BBD PHP,
3BAF PHA, 3BA1 NOP, 3B93 INY, 3 B85 INX,
3B77 DEY, 3B69 DEX, 3B5B CLV, 3 B4D CLI,
3B3F CLD, 3B31 CLC, 3B23 BRK, 3 A54 RP)
3A44 SEC 3A34 TOP 3A27) 3 A1C)Y
3A10 X) 3A04 ,Y 39F8 ,X 3 9EC MEM
39DF # 39D4 ,A 39A1 SETUP 3 993 BINARY
3984 PUTOA 3976 PUSHOA 3967 POPTWO 3 958 POP
394C PUT 3940 PUSH 3933 NEXT 3 926 XSAVE
3918 UP 390D W 3903 IP 3 8F8 N

Figure 7-1. VLIST of RSC-FORTH Assembler Words

7-2

7.1.1 CODE Definitions

The CODE word defines a word written in assembly code (called a CODE-
definition) in a similar manner as the : word def ines a word written in FORTH
(a colon-definition). The assembler vocabulary is a utomatically selected as
CONTEXT when CODE is encountered. The name foll owing CODE is entered into
the dictionary as the FORTH word for the CODE-defin ition. Assembly language
routines or program segments in CODE-definition for m are often referred to as
"CODE" or "code" in general FORTH literature. Assem bly language instructions in
RPN format (see Section 7.2) are then entered along with any instructions to
save and restore return stack values (see Section 7 .4) and conditionals (see
Section 7.6) The END-CODE word terminates a CODE- definition in a similar
manner as the ; terminates a FORTH colon-definit ion.

During assembly of CODE-definitions, FORTH continue s interpretation of each word
encountered in the input stream (not in the compile mode). These assembler words
specify operands, address modes, and op-codes. END- CODE concludes the CODE-
definition. An error check verifies correct complet ion then "unsmudges" the
definition's name to make it available for dictiona ry searches.

7.1.2 Assembly-time Versus Run-time

It is important to understand at what time a partic ular word definition
executes. During assembly, each assembler word int erpreted executes. Its
function at that instant is called 'assembling' or 'assembly-time'. This
function includes op-code generation from mnemonics , address calculation,
address mode selection, and relative branch calcula tion.

The later execution of the generated code is called 'run-time'. This
distinction is particularly important with the cond itionals. At 'assembly-time',
each word (i.e., IF, UNTIL, BEGIN, etc.) 'runs' to produce machine code
(conditional branch and/or jump instructions) which will later execute at 'run-
time' when its CODE-definition name is used.

7.1.3 CODE-Definition Example

As a practical example, here's a simple program tha t increments the value in
Port A by one. Enter the following words:

 CODE POPA
 PA INC,
 NEXT JMP,
 END-CODE

 a. The word CODE is first encountered and ex ecuted by FORTH. CODE
 builds the name POPA into a dictionary header and calls ASSEMBLER
 as the CONTEXT vocabulary. Note that the <n ame> after CODE must be
 on the same line.

7-3

 b. INC, is next found in the assembler vocabu lary as the op-code. When
 INC, executes, it assembles the byte value E 6 into the dictionary as
 the INC instruction machine code. This causes the R6502 CPU to
 read the value from Port A, increment the val ue, and then return the
 new value to Port A.

 Note that the FORTH assembler word names end with a ",".
 The significance of this is:

 (1) The comma distinguishes assembler control words from FORTH
 control words, e.g., IF, versus IF , et c.

 (2) The comma shows the conclusion of a logic al grouping that would
 be one line of classical assembly source code.

 (3) "," compiles into the dictionary; thus, a comma implies the
 point at which code is generated.

 (4) The "," distinguishes op-codes from possi ble hexadecimal numbers
 ADC, ADD, and BCC.

 c. FORTH executes your word definitions under control of the address
 interpreter, named NEXT . This short code ro utine moves execution from
 one definition to the next. At the end of you r CODE-definition you must
 return control to NEXT or else to other cod e which returns to NEXT.

 NEXT is a constant that specifies the machin e address of FORTH's
 address interpreter (at $F428). Here NEXT i s the operand for JMP, .
 As JMP, executes, it assembles a machine co de jump to the address
 of NEXT from the assembly time stack value. If control is not returned
 to this FORTH address as the last instruction in the CODE-definition,
 improper operation of the microcomputer and p ossible alteration of your
 program may result.

 d. The END-CODE word terminates the CODE-defin ition with a SMUDGE of
 the name. It also exits the ASSEMBLER maki ng CONTEXT the same as
 CURRENT .

The object code of our example is:

 84 (Name letter coun t with MSB set)
 45 58 49 D4 POPA (Name with MSB of last digit set)
 00 08 link field
 14 08 code field
 E6 00 INC PORTA (location $00)
 4C 6F C0 JMP NEXT

7.2 ASSEMBLER OP-CODES

The bulk of the assembler consists of dictionary en tries for the R6500 mnemonic
op-codes. Refer to Appendix B in the R6500 Programm ing Manual to see the machine
code that is generated by each mnemonic op-code.

7-4

7.2.1 Single Mode Op-Codes

The R6500 single mode op-codes are:

 BRK, CLC, CLD, CLI, CLV, DEX, DEY, INX,
 INY, NOP, PHA, PHP, PLA, PLP, RTI, RTS,
 SEC, SED, SEI, TAX, TAY, TSX, TXS, TXA,
 TYA,

When any of these op-codes are executed, the corres ponding machine code byte is
assembled into the dictionary.

7.2.2 Multi-Mode Op-Codes

The multi-mode op-codes are:

 ADC, AND, CMP, EOR, LDA, ORA, SBC, STA,
 ASL, DEC, INC, LSR, ROL, ROR, STX, CPX,
 CPY, LDX, LDY, STY, JSR, JMP, BIT, RMB,
 SMB,

These op codes take an operand which must already b e on the stack. An address
mode may also be specified. If none is given, the o p-code uses z-page (when
appropriate) or absolute addressing.

7.3 ADDRESSING MODES

The addressing modes are specified by:

 FORTH Addressing Address
 Word Mode

 .A accumulator none
 # immediate 8 bits only
 ,X indexed X z-page or ab solute
 ,Y indexed Y z-page or ab solute
 X) indexed indirect X z-page only
)Y indirect indexed Y z-page only
) indirect absolute onl y
 none memory z-page or ab solute

Here are examples of FORTH vs. conventional assembl er. Note that the operand
comes first, usually followed by any addressing mod e modifier, and then the op-
code mnemonic. This makes best use of the stack at assembly-time. Also, each
assembler word is set off by blanks, as is required for all FORTH source text.

7-5

 FORTH Conventional Assembler

 .A ROL, ROL A (.A distinguish es A
 1 # LDY, LDY #1 from hex numbe r OA)
 DATA ,X STA, STA DATA,X
 DATA ,Y CMP, CMP DATA.Y
 60 X) ADC, ADC (60,X)
POINT)Y STA, STA (POINT),Y
VECTOR) JMP, JMP (VECTOR)

The words DATA , POINT , and VECTOR specify mac hine addresses defined by
prior VARIABLE or CONSTANT words. In the case o f "60 X) ADC," the operand
memory address $0060 was given directly. This is oc casionally done if the usage
of a value does not justify devoting the dictionary space to a symbolic value.

7.4 R6502 CONVENTIONS

7.4.1 Stack Addressing

The parameter stack is located in z-page, and is us ually addressed by "Z-
PAGE,X". This stack starts at $00C2 and grows physi cally downward. The X index
register is the data stack pointer. Thus, increment ing X by two removes one data
stack value; decrementing X twice makes room for on e new data stack value.

16-bit values are placed on the stack according to the R6500 convention; the low
byte is at low memory, with the high byte following . This allows "indexed,
indirect X" instructions to be executed directly of f of a stack value.

The top and second stack values are referenced ofte n enough that the support
words TOP and SEC are included. Using

 TOP LDA, assembles LDA (0,X) and
 SEC ADC, assembles ADC (2,X)

TOP leaves 0 on the stack and sets the address mod e to ,X . SEC leaves 2 on
the stack and also sets the address mode to ,X .

Here is a pictorial representation of the parameter stack in z-page (see
Appendix F):

7-6

The 0 or 2 left by TOP or SEC is the base addre ss above which X register
indexes. You may further modify this at assembly-ti me to address at any byte in
the parameter stack.

Here is an example of assembly code to "or" togethe r the top four bytes on the
stack:

 FORTH Conventional Assembler

 TOP LDA, LDA (0,X)
 TOP 1+ ORA, ORA (1,X)
 SEC ORA, ORA (2,X)
 SEC 1+ ORA, ORA (3,X)

To obtain the 14-th byte on the stack, use:

 TOP 13 + LDA,

7.4.2 Return Stack

The FORTH Return Stack (and the machine stack) is l ocated in the R6500 machine
stack area in Page Zero. It starts at $00FF and bui lds physically downward. No
lower bound is set or checked. This implementation has sufficient capacity for
most non-recursive applications with 30 levels of e ntry.

By R6500 convention the CPU's S register points to the next free byte below the
bottom of the Return Stack. The byte order follows the convention of low
significance byte at the lower address.

Return stack values may be obtained by: PLA, PLA, which will pull the low
byte, then the high byte from the Return Stack. To operate on arbitrary bytes,
the method is:

 a. Save X in XSAVE .

 b. Execute TSX, to move the S register cont ents to the X register.

7-7

 c. Use RP) to address the lowest byte of t he return stack. Offset the
 value to address higher bytes. (The addr ess mode is automatically
 set to ,X .)

 d. Restore X from XSAVE .

As an example, this CODE-definition non-destructive ly tests the second item on
the Return Stack (also the machine stack), to see i f it is zero.

 CODE IS-IT (Is second item on Ret urn Stack zero?)
 XSAVE STX, (Setup for Return Stack)
 TSX,
 RP) 2+ LDA, (Or second item's bytes together)
 RP) 3 + ORA,
 0= IF, (If zero, increment Y b y one)
 INY,
 THEN,
 TYA, (Save low byte)
 XSAVE LDX, (Restore data stack)
 PUSHOA JMP, (Push Boolean and z ero onto data stack)
 END-CODE

7.5 FORTH REGISTERS

7.5.1 Assembly Registers

Several FORTH registers are available only at the a ssembly level and have been
given names that return their memory addresses. The se are:

 IP Address of the Interpretive Pointer, spe cifying the next FORTH
 address which will be interpreted by NE XT .

 W Address of the pointer to the code field of the dictionary definition
 just interpreted by NEXT . W-1 contains $6C, the op-code for the
 indirect jump instruction. Therefore, ju mping to W-1 will indirectly
 jump via W to the machine code for the d efinition.

7-8

 UP User Pointer containing the address of t he base of the user area.

 N A utility area in z-page from N-1 thru N +7.

7.5.2 CPU Registers

When FORTH execution leaves NEXT to execute a COD E-definition, the following
conventions apply:

 a. The Y register is zero. It may be freel y used.

 b. The X register defines the low byte of t he bottom data stack item
 relative to machine address $0000. X mus t point to the correct item
 upon returning to FORTH.

 c. The CPU stack pointer S points one byte below the low byte of the
 bottom item in the Return Stack. Execut ing PLA, will pull this byte
 to the accumulator.

 d. The accumulator may be freely used.

 e. The CPU is in the binary (i.e., not deci mal) mode and must be
 returned in the binary mode (with a CLD prior to return, as needed).

7.5.3 XSAVE

XSAVE is a byte buffer in z-page, for temporary st orage of the X register.
Typical usage, with a call to a previously defined code word USER , which will
change X, is:

 CODE DEMO
 XSAVE STX,
 ' USER JSR,
 XSAVE LDX,
 NEXT JMP,
 END-CODE

7.5.4 N Area

When absolute memory registers are required, use th e 'N Area' in Page Zero.
These registers may be used to store pointers for i ndexed/indirect addressing or
to store temporary values.

The assembler word N returns the base address ($0 051). The N area spans 9
bytes, from N-1 thru N+7. Conventionally, N-1 hold s one byte and N, N+2, N+4,
N+6 are pairs which may hold 16-bit values. See S ETUP for help on moving
values to the N Area.

It is very important to note that many FORTH proced ures use N . Thus, N may
only be used within a single CODE-definition. Never expect that a value will
remain within N outside a single definition!

7-9

7.5.5 SETUP

Often we wish to move stack data values to the N area. The word SETUP has
been provided for this purpose. Upon entering SETU P the accumulator specifies
the quantity of 16-bit stack values to be moved to the N area. That is, A may be
1, 2, 3, or 4 only:

 3 # LDA,
 SETUP JSR,

 Stack before N after Stack after

 TOP —-> A high N -—> A
 B low B
 SEC -—> C C
 D D
 E E
 F F
 G low TOP —> G
 H high H

7.6 CONTROL FLOW

FORTH discards the usual convention of assembler la bels. Instead, two
replacements are used. First, each FORTH definition name is permanently included
in the dictionary. This allows procedures to be loc ated and executed by name at
any time as well as be compiled within other defini tions.

Secondly, within a CODE-definition, execution flow is controlled by label-less
branching according to "structured programming". Th is method is identical to the
form used in colon-definitions. Branch calculations are done at assembly-time by
temporary stack values placed by the control words:

 BEGIN, THEN,
 UNTIL, AGAIN,
 IF, WHILE,
 ELSE, REPEAT,

Here again, the assembler words end with a comma, t o indicate that code is being
produced and to clearly differentiate from the high -level form.

One major difference occurs! High-level flow is con trolled by run-time Boolean
values on the data stack. Assembly flow is controll ed instead by processor
status bits. You must indicate which status bit to test with one or two FORTH
condition code (cc) words, just before a conditiona l branching word i.e., IF,
UNTIL, or WHILE, .

7-10

The conditional specifiers for the CPU are:

 FORTH
 Condition
 Code (cc) Test
 Words Function Processor Status Bit

 CS carry set C=1
 0< less than zero N=1
 0= equal to zero Z=1
 VS overflow set V=1
 CS NOT carry clear C=0
 0< NOT positive N=0
 0= NOT not equal zero Z=0
 VS NOT overflow clear V=0
 BITCLR state of bit in zero page lo cation N/A
 BITSET state of bit in zero page lo cation N/A

7.6.1 Conditional Looping

A conditional loop is formed at assembler level by placing the instructions to
be repeated between BEGIN, and UNTIL, . Precede UNTIL, by a conditional
specifier, e.g., 0< . The assembler generates the proper conditional branch
machine instruction, e.g., BEQ, to test the proces sor status and to
conditionally branch back to the machine instructio n immediately after the
BEGIN, .

The general format is:

 BEGIN,
 <assembly code>
 <cc> UNTIL,
 <continuing assembly code>

For example, enter the CODE-definition for LOOP-TES T :

 HEX
 0 VARIABLE TICK
 CODE LOOP-TEST
 6 # LDA,
 N STA,
 BEGIN,
 TICK DEC,
 N DEC,
 0= UNTIL,
 NEXT JMP,
 END-CODE

7-11

Note where the variable TICK and LOOP-TEST are located in the FORTH
dictionary by using VLIST :

 VLIST
 42A LOOP-TEST 418 TICK 40B TASK 3 844 ADMP
 3805 ;DUMP 37CF FORMAT 367E FMTRK 3 674 BANKEXECUTE
 3664 BANKEEC! 3657 BANKC@ OK (<SPACE> b ar pressed)

Also, find the start of the next dictionary entry

 HERE . <RETURN> 43C

A disassembly of the code is as follows:

 042E A9 06 LDA #$06
 0430 85 51 STA $51
 0432 CE 1C 04 DEC $041C (Addres s of TICK)
 0435 C6 51 DEC $51
 0437 DO F9 BNE $0432
 0439 4C 28 F4 JMP $F428

This shows you how the assembly code is generated f or a typical conditional
loop.

First, the temporary storage byte at address N is loaded with the value 6. The
beginning of the loop is marked (at assembly-time) by BEGIN, . Memory at TICK
is decremented, then the loop counter in N is dec remented. Of course, the CPU
updates its status register as N is decremented. Finally, a test for Z=1 is
made; if N hasn't reached zero, execution returns to BEGIN, . When N
reaches zero (after executing TICK DEC, 6 times) ex ecution continues ahead after
UNTIL, . Note that BEGIN, generates no machine c ode, but is only an assembly-
time locator. In this example, 0 = UNTIL, genera ted a BNE instruction to the
address located by BEGIN, .

7.6.2 Conditional Execution

Paths of execution may be chosen at assembly in a s imilar fashion as done in
colon-definitions. In this case, the branch is chos en based on a processor
status condition code. The general format is (usin g 0= as a typical condition
code word):

 PORT LDA,
 0= IF,
 <code for zero set>
 THEN,
 <continuing code>

In this example, the accumulator is loaded from PO RT . The zero status is
tested and, if set (Z=1), the code for zero set is executed. Whether the zero
status is set or not, execution will resume at THE N, .

7-12

The conditional branching also allows a specific ac tion for the false case.
Here we see the addition of the ELSE, part.

 PORT LDA,
 0= IF,
 <assembly code for zero set>
 ELSE,
 <assembly code for zero clear>
 THEN,
 <continuing assembly code>

The test of PORT will select one of two execution paths, before resuming
execution after THEN, . The next example incremen ts N based on bit D7 of a
port:

 PORT LDA, (Fetch one byte)
 0< IF,
 N DEC, (If D7=l, decrement N)
 ELSE,
 N INC, (If D7=0, increment N)
 THEN, (Continue on)

7.6.3 Conditional Nesting

Conditionals may be nested, according to the conven tions of structured
programming. That is, each conditional sequence beg un (IF, BEGIN,) must be
terminated (THEN, UNTIL,) before the next earli er conditional is terminated.
An ELSE, must pair with the immediately preceding IF, .

 BEGIN,
 <code always executed>
 CS IF,
 <code if carry flag set>
 ELSE,
 <code if carry flag clear>
 THEN,
 <loop until zero flag is non-zero>
 0= NOT UNTIL,
 <code that continues onward>

Next is an error that the assembler security will r eveal.

 CODE <name>
 BEGIN,
 PORT LDA,
 0= IF,
 TOP INC,
 0= UNTIL,
 ENDIF,

7-13

The UNTIL, will not complete the pending BEGIN, since the immediately
preceding IF, is not completed. An error trap wil l occur at UNTIL, and error
number 19 "conditionals not paired" will be generat ed. To delete the erroneous
code from the dictionary, first SMUDGE the word t o allow finding it, then
FORGET it, and correct the source code and recompi le.

7.6.4 Some Nesting Examples

 a. An 8-Bit Counter

 An 8-bit counter illustrates simple condition al looping.

 0 VARIABLE COUNTS
 -1 ALLOT
 CODE COUNT-DOWN
 0 # LDA,
 COUNTS STA,
 BEGIN,
 COUNTS DEC,
 0= UNTIL,
 NEXT JMP,
 END-CODE

 Execute the counter:

 COUNT-DOWN <RETURN> OK

 Dump the machine code for examination:

 HEX ' COUNT-DOWN NFA 20 DUMP
 41F 8A 43 4F 55 4E 54 2D 44 4F 57 CE 1 1 4 30 4 30
 42F 4 A9 0 8D 1E 4 DO FE 4C 28 F4 4 44 55 4D 50
 OK

 The breakdown of the machine code is:

 41E 00 (COU NTS Variable)
 41F 8A (Nam e Field = Start)
 420 43 4F 55 4E 54 2D 44 4F 57 CE (COU NT-DOWN Name)
 42A 11 04 (Lin k Field = $0411)
 42C 30 04 (PFA PTR = $0430)
 42E 30 04 (Cod e Field = $0430)
 430 A9 00 LDA #$00 (Par ameter Field)
 432 8D 1E 04 STA $041E
 435 CE 1E 04 DEC $041E
 438 DO FB BNE $0435 (Next)
 43A 4C 28 F4 JMP $F428

 In this example we use part of the RAM dictio nary for the counter
 (COUNTS) . This counter is only 8 bits, howev er, so after we create
 the 16-bit named dictionary location COUNTS , we use ALLOT to
 back up over the extra byte and recover it fo r use.

7-14

The definition of the word COUNT-DOWN is a simple loop, decrementing COUNTS
until it hits zero then jump to NEXT . First, of c ourse, we clear COUNTS to
its initial value by the LDA, and STA, instruct ions. The initializing to
zero is no problem because right after we clear cou nts to zero we decrement it
and it becomes FF. This way we loop 256 times befor e finally exiting when we
decrement to zero.

 b. A 16-Bit Counter

 This counter is similar to the 8-bit one except that:

 - COUNTS is the right size to begin w ith therefore ALLOT is
 unnecessary.
 - We initialize two bytes to zero to start with.
 - We use two nested loops to do the d ecrementing.

 The assembly code is:

 0 VARIABLE COUNTS
 CODE COUNT-DOWN
 0 # LDA,
 COUNTS STA,
 COUNTS 1+ STA,
 BEGIN,
 BEGIN,
 COUNTS DEC,
 0= UNTIL,
 COUNTS 1+ DEC,
 0= UNTIL,
 NEXT JMP,
 END-CODE

 Execute the counter:

 COUNT-DOWN <RETURN> OK

 The machine code is:

 041E 00 00 (COU NTS Variable)
 0420 8A (Nam e Field Start)
 0421 43 4F 55 4E 54 2D 44 4F 57 CE (COU NT-DOWN Name)
 042B 11 04 (Lin k Field = $0411)
 042D 31 04 (PFA PTR = $0431)
 042F 31 04 (Cod e Field = $0431)
 0431 A9 00 LDA #$00 (Par ameter Field)
 0432 8D 1E 04 STA $041E
 0435 8D 1F 04 STA $041F
 0438 CE 1E 04 DEC $041E
 043B DO FB BNE $0432
 043D CE 1F 04 DEC $041F
 0440 DO F6 BNE $0432
 0442 4C 28 F4 JMP $F428

7-15

 c. A 24-Bit Counter

 The value of indenting the loops for visual c larity is more obvious
 here than in the previous example. This examp le uses a three byte
 counter and so one more byte of dictionary sp ace is allotted and
 three nested loops do the work.

 0 VARIABLE COUNTS
 1 ALLOT
 CODE COUNT-DOWN
 0 # LDA,
 COUNTS STA,
 COUNTS 1+ STA,
 COUNTS 2+ STA,
 BEGIN,
 BEGIN,
 BEGIN,
 COUNTS DEC,
 0= UNTIL,
 COUNTS 1+ DEC,
 0= UNTIL,
 COUNTS 2+ DEC,
 0= UNTIL,
 NEXT JMP,
 END-CODE

 Execute the counter:

 COUNT-DOWN <RETURN> OK (Ab out 2 ½ min.)

The breakdown of the machine code is:

 041F 00 00 00 (COU NTS Variable)
 0422 8A (Nam e Field Start)
 0423 43 4F 55 4E 54 2D 44 4F 57 CE (COU NT-DOWN Name)
 042C 11 04 (Lin k Field - $0411)
 042E 32 04 (PFA PTR = $0432)
 0430 32 04 (Cod e field = $0432)
 0432 A9 00 LDA #$00 (Par ameter Field)
 0434 8D 1F 04 STA $041F
 0437 8D 20 04 STA $0420
 043A 8D 21 04 STA $0421
 043D CE 1F 04 DEC $041F
 0440 DO FB BNE $043D
 0442 CE 20 04 DEC $0420
 0445 DO F6 BNE $043D
 0447 CE 21 04 DEC $0421
 044A DO F1 BNE $043D
 044C 4C 28 F4 JMP $F428

7-16

7.7 RETURN OF CONTROL

When concluding a CODE-definition, several common s tack manipulations are often
needed. These functions are already in the nucleus, so we may share their use
just by knowing their return points. Each of these words ultimately returns
control to NEXT :

 POP Remove one 16-bit stack value.

 POPTWO Remove two 16-bit stack values.

 PUSH Push two bytes to the data stack.

 PUT Write two bytes to the data stack, replacing
 the present top of the stack.

 PUSH0A Push a zero and the accumulator to the data stack.

 PUT0A Replace the top of the stack with a
 zero and the accumulator.

 BINARY Combines the action of POPTWO an d PUSH .

Our next example complements a byte in memory. The bytes' address is on the
stack when INVERT is executed.

 CODE INVERT (Code to invert a memory byt e)
 HEX (Change I/O base to HEX)
 TOP X) LDA, (Fetch byte addressed by sta ck)
 FF # EOR, (Complement accumulator)
 TOP X) STA, (Replace in memory)
 POP JMP, (Discard pointer from stack)
 END-CODE (Return to NEXT)

A new stack value may result from a CODE-definition . We could place it on the
stack by:

 CODE ONE (Code to put 1 on the stack)
 DEX,
 DEX, (Make room on the data stac k)
 1 # LDA,
 TOP STA, (Store low byte)
 TOP 1+ STY, (High byte stored from Y sin ce = zero)
 NEXT JMP,
 END-CODE

A simpler version could use PUSH :

 CODE ONE (Code to put 1 on the stack)
 1 # LDA,
 PHA, (Push low byte to machine s tack)
 TYA, (High byte to accumulator)
 PUSH JMP, (Push to data stack)
 END-CODE

7-17

The convention for PUSH , BINARY and PUT is:

 • Push the low byte on to the machine stack .
 • Leave the high byte in the accumulator.
 • Jump to PUSH , BINARY or PUT .

PUSH will place the two bytes at the new bottom of the data stack. PUT will
over-write the present bottom of the stack with the two bytes. BINARY first
pops two stack values (four bytes) then does a push . Failure to push exactly one
byte on the machine stack will disrupt execution up on usage!

The simplest version would use PUSH0A :

 CODE ONE
 1 # LDA,
 PUSHOA JMP,
 END-CODE

If the high byte of a result to be placed on the st ack is zero, and the low byte
is in the accumulator, the words PUSH0A and PUT0A a re convenient. They work the
same as PUSH and PUT but add to, or replace, the d ata on the stack with a zero
in the high byte position and the contents of the a ccumulator in the low byte
position.

7.8 ASSEMBLER SECURITY

7.8.1 Assembler Tests

Numerous tests are made by the assembler to detect errors in structure and
syntax. These tests verify that

 a. All parameters used in CODE-definitions a re removed.
 b. Conditionals are properly nested and pair ed.
 c. Op-codes are valid.
 d. Address modes and operands are allowable for the op-codes.

Note that a possible error not detectable by the as sembler, is referencing a
word in the wrong vocabulary, e.g., referring to 0= in the FORTH vocabulary
rather than the Assembler vocabulary.

7.8.2 Bypassing Security

Occasionally we may want to generate unstructured c ode. We can then control the
assembly-time security checks, as follows: First, w e must note the parameters
utilized by the control structures at assembly-time . The notation below is taken
from the assembler glossary in Appendix D. The "--- " indicates assembly-time
execution and separates input stack values from the output stack values.

7-18

 BEGIN, --> --- addrB 1
 UNTIL, --> addrB 1 <cc> ---
 AGAIN, --> addrB 1 ---
 WHILE, --> addrB 1 --- addrB 1 ad drW 3
 REPEAT, --> addrB 1 addrW 3 ---
 IF, --> <cc> --- addrI 2
 ELSE, --> addrI 2 --- addrE 2
 THEN, --> addrI 2 ---
 or addrE 2 ---

Where the address values indicate the machine locat ion of the corresponding
"B"EGIN, , "I"F, , or "E"LSE, and <cc> represents the condition code to select
the processor status bit referenced. The digit 1, 2 or 3 is tested for
conditional pairing.

The general method of security control is to drop o ff the check digit and
manipulate the addresses at assembly-time. The secu rity against errors is less,
but the programmer is usually paying intense attent ion to detail during this
effort.

7.9 ADDING ASSEMBLY CODE TO A DEFINING WORD

The word ;CODE is used in a colon-definition to s top compiling and to add
assembly code to the definition. The format is as f ollows:

 : <name> [FORTH words] ;CODE [assembly code] END-CODE

where the [FORTH words] are run at compile time and the [assembly code] is
executed at run-time.

When <name> is used later to define new words, this assembly code address will
be put into the code sequence of the new words. Thu s, the new words will cause
this assembly code to be executed. For example,

 : VALUE CREATE SMUDGE C,
 ;CODE
 0 X) LDA,
 PUSH0A JMP,
 END-CODE

When used by typing 80 VALUE EIGHTY , the word EIGH TY is created which, when
executed with a "dot" to print the stack top,

 EIGHTY .

will yield

 80 OK

7-19

This page is intentionally left blank

7-20

SECTION 8

HANDLING INTERRUPTS IN FORTH

8.1 TYPES OF INTERRUPT HANDLERS

Interrupts can easily be handled in FORTH using one of two methods: machine
level or interpretive interrupt processing. A machi ne level, or conventional,
interrupt handler is written in assembly language a nd performs the entire
interrupt processing before returning to the interr upted routine. NMI
interrupts must be serviced with a machine level in terrupt handler, as shown in
the flowchart in Figure 8-1. The IRQ interrupts ca n also be serviced with a
machine level interrupt handler. The general flowch art for using this method on
the R65F11/R65F12 microcomputer is shown in Figure 8-2. This approach provides
the fastest response to an interrupt, however, sinc e it is written in assembly
language it may take longer to develop and check ou t.

An interpretive IRQ interrupt has a minimum length assembly language subroutine
to service the interrupt and to initiate interrupt processing, which is written
in high level FORTH and is executed under control o f the FORTH inner-
interpreter, NEXT . The general flowchart for thi s approach is shown in Figure
8-3. Although the response to an interrupt may be l onger with this approach, the
development and checkout may be done quicker and ea sier since the main interrupt
processing is done in FORTH.

When developing interrupt dependent software (regar dless of the type of
interrupt) try to take small steps between checkout . Carefully determine when
system interrupts should be disabled or enabled. A void using any interrupt
service routine that has not been first tested for logical integrity.

8.2 MACHINE LEVEL INTERRUPT HANDLING

Write a machine level interrupt handler in assembly language either as a CODE-
definition (see Section 7.1) or as a code fragment (described in Sections 8.2.1
and 8.2.2). If written as a CODE-definition, assig n a name to the interrupt
handler and later address it by that name to load t he interrupt vector. If
written as a code fragment, include the assembly co de directly into the
dictionary, but first save the starting address for later loading into the
interrupt vector. The code fragment (also called a n orphan) eliminates the
slight overhead of the dictionary header. In eithe r case, terminate the
interrupt handler with an RTI, to return to the interrupted program rather
than NEXT JMP, which returns control to the inner -interpreter. Before
continuing you may want to review the R6500 interru pt processing features
discussed in Chapter 9 of the R6500 Programming Man ual.

The R65F11/R65F12 interrupt vectors normally availa ble to the user are:

 NMI - $0040 (NMIVEC)
 IRQ - $0042 (IRQVEC)

8-1

Figure 8-1. Machine Level NMI Interrupt Handling

8-2

Figure 8-2. Machine Level IRQ Interrupt Handling

8-3

Figure 8-3. Interpretive IRQ Interrupt Handling

8-4

Unless modified by the user, these vectors normally point to
COLD , so that an unintentionally generated interru pt will not totally crash
the system.

8.2.1 CODE-Definition Form

The form for an interrupt handler written as a CODE -definition is

 HEX
 CODE <name>
 <assembly code>
 <for interrupt>
 <handler>
 RTI,
 END-CODE
 ' <name> @ 004X ! (Set interrupt vector)

where X = 0 or 2

Don't forget the END-CODE as it completes the COD E-definition and makes <name>
available for use to load the interrupt handler add ress in the interrupt vector.

The word ' ("tick") fetches the parameter field p ointer address (PFAPTR) of
the word <name> to the stack. The PFAPTR obtaine d is a pointer to the
starting address of the executable machine code. T he @ retrieves the actual
address. The 004X ! stores it in the appropriate vector.

8.2.2 Code Fragment Fo rm

The form for a machine level interrupt handler writ ten as a code fragment is:

 HEX
 ASSEMBLER (Include assembler voc abulary)
 HERE (Locate dictionary add ress)
 <assembler code>
 <for interrupt>
 <handling>
 RTI,
 004X ! (Store dictionary addr ess in
 interrupt vector)

Since the interrupt handler is not named, the start ing address of the machine
code is saved on the stack by the word HERE until the coding is complete, then
it is stored in the appropriate interrupt vector. N otice that in both the above
cases the interrupt vector was loaded after the int errupt handler was assembled.
This method allows an IRQ or NMI interrupt occurrin g immediately after the
interrupt vector is loaded (and the IRQ interrupt i s enabled) to be processed
correctly.

8-5

8.3 INTERPRETIVE INTERRUPT HANDLING PROCEDURE

8.3.1 Interrupt Service Routine

To write a minimum length interrupt service routine using the procedure
described in Section 8.2 to load the R65F11/R65F12 interrupt vectors, this
routine needs only to set bit 7 in the FORTH interr upt flag INTFLAG (at $004A)
to one and return to the interrupted routine.
The format of the INTFLAG variable word is

8.3.2 Interrupt Processing Word

The desired IRQ interrupt processing procedure uses a high level FORTH colon-
definition word. Load the code field address (CFA) of this interrupt handler
word into the FORTH interrupt vector INTVEC , a tw o-byte user variable located
at $005B and $005C. Note that upon FORTH initial en try, or upon executing FORTH
word COLD , this vector is initialized to $FB4A, w hich points to COLD
processing.

When FORTH is executing its inner-interpreter, i.e. , NEXT , it examines the
interrupt request and inhibits bits of INTFLG . Wh en the interrupt inhibit (bit
6) of INTFLG is ON, the interrupt request (bit 7) is ignored and NEXT
executes the FORTH word. When the interrupt inhibit is OFF, the interrupt
request (bit 7) of INTFLG is tested. If the inter rupt request is OFF, then
NEXT executes the next FORTH word. If the interru pt request is ON, then NEXT
passes execution to the word whose CFA is in INTVE C , i.e., the interpretive
interrupt service word, and sets the inhibit bit.

The interpretive interrupt word now processes the s ervice required without
interruption (inhibit bit is set). When the interpr etive interrupt word has
finished, it must reset the inhibit bit to zero, re store the interrupted word to
the interpretive pointer, and jump to NEXT to con tinue the interrupted
execution. Remember to keep the assembly interrupt code as short and simple as
possible. For example, if you are reading data valu es at specific times,

8-6

read them and put them away in, say, a FORTH variab le using a small interrupt
routine for just that purpose. Meanwhile, a high le vel FORTH routine examines
that variable for new data and processes it when it appears. FORTH is fast
enough for much of the work to be done in high leve l which will speed program
development time.

If FORTH is not fast enough for some purposes, a po werful technique is to first
develop the program logic in high level FORTH and t est the logic at reduced
speed. When it works correctly, code in assembly la nguage only those FORTH words
that are required to bring the speed performance to the desired level. By this
technique, program development time is reduced to t he minimum.

8.3.3 Example

An example of an interpretive interrupt handler is shown in Figure J-2. Only two
short CODE-definition words are defined; one to set the request bit in INTFLG
when an IRQ interrupt occurs due to Timer 3 timeout , and one to clear the
inhibit bit in INTFLG when the interpretive inter rupt word completes
execution.

The changes to the 24-Hour Clock to use interpretiv e interrupts involve
replacing the code interrupt handling routine with a colon-definition or code
fragment service word, writing the interpretive int errupt arm and trigger words
and then the FORTH interrupt processing word. The conventional interrupt
handler from PHA, to RTI, is replaced with two smaller code routines, one a
code fragment and the other the ARM word that goe s at the end of the FORTH
interrupt processing word.
The code fragment is the interrupt service subrouti ne that is executed with each
IRQ interrupt. It sets the interrupt request bit i n INTFLG and clears the
Timer's IRQ request bit which caused the interrupt. This code fragment serves
as a typical example of all that is necessary to do at the code level for a wide
variety of high level FORTH interrupt words.

The CODE word ARM turns OFF the interpretive inte rrupt inhibit bit (bit 6) of
INTFLG , restores the FORTH interpretive pointer in to the interrupted FORTH word
and then jumps to FORTH's inner-interpreter NEXT to continue execution. ARM
could be written in high level FORTH using C@ , C ! and ; words but it must
not be interfered with by a high level interrupt. T his interference cannot occur
if the functions are done within a CODE-definition.

The FORTH interpretive interrupt word for the 24-Ho ur Clock is T+ . Another
FORTH word, +!L is used often by T+ . These two words comprise the entire
interpretive interrupt service word. T+ does just what the CODE-definition
interrupt routine did; i.e., increment the hundredt h's of a second byte by 5 and
when it reaches 100, increment the seconds, minutes , etc. The utility word +!L
increments a certain byte by a given amount and che cks it against the given
limit. If the limit is exceeded, it zeros the byte and returns a true value so
that the next byte can be incremented. The argumen ts on the stack for +!L
are:

 limit 1- byte-address increment --- T/F

8-7

The CODE-definition word ARM stops execution of T+ . The word [switches
FORTH from the compiling state to the interpreting state so that the word
SMUDGE will be executed, which makes the name of T+ available in the FORTH
dictionary.

In order for the interpretive interrupts to work, t he code field address (CFA)
of the interpretive interrupt word must be loaded i nto INTVEC . This is
accomplished in this example by the following:

 ' T+ (Obtain the PFA of T+)
 CFA (Change it to the CFA)
 ASSEMBLER (Switch to the FORTH assemb ler vocabulary)
 INTVEC (Obtain the address of INTV EC)
 ! (Store the CFA of 'T+' in I NTVEC)
 FORTH (Return to the FORTH only vocabulary)

which follows the definition of T+ .

Note that if the microcomputer is executing machine code for an appreciable
amount of time and not frequently executing NEXT , the FORTH interrupt routine
will not be executed and interrupt requests may pil e up or be lost (depending on
the interrupt service subroutine) . This can happe n when using the printer or
waiting for a key.

The proper choice of machine level or interpretive (or both) interrupt service
routines can make a very flexible approach to contr ol situations or
understanding computer interrupts.

8.3.4 Points to Remember

 a. Define and code all required words befor e loading INTVEC , or
 requesting an interpretive interrupt. T he required CODE words are
 (see text for more detail):

 1 - the IRQ or NMI code fragment
 2 - the ARM word to rearm the interrupt, etc.
 3 - the ENABLE and DISABLE words for IRQ (if using IRQ).

 A colon-definition level FORTH word is a lso required to run at
 interrupt request. The last word execute d by this word is ARM ,
 above.

 b. See that NMI and IRQ do not contend for the interpretive interrupt --
 there is no stacking and they can get lo st.

 c. Do not alter any of FORTH's floating buf fers (at HERE and PAD) or
 any of the USER variables (BASE , DPL , IN , etc.) or leave
 anything on the stack between interrupts .

8-8

 d. Use caution when using interpretive inte rrupts — think the sequence
 through before acting. If it does not op erate correctly, perhaps you
 are overwriting something that FORTH nee ds. Try using a do-nothing
 word like

 : DUMMY ARM [SMUDGE

 for the interpretive interrupt word and see if that works.

 e. The X register contents must be saved if X is used during the
 interrupt processing, but not in XSAVE o r any of the other regular
 FORTH "registers". For example, use the Return Stack instead, such
 as TXA,
 PHA, .

8-9

This Page is intentionally left blank

8-10

SECTION 9

PROGRAMMING THE R65F11 MICROPROCESSOR I/O IN FORTH

Programming the R65F11 and R65F12 single chip micro computer I/O functions in
FORTH is similar to programming individual members of the R6500 peripheral
devices family. Special consideration must be given , however, to the specific
operation characteristics of the R65F11 and R65F12 parallel I/O ports, serial
I/O channel and timers. The techniques described ca n, however, be applied to
other Rockwell single chip microcomputers, e.g., th e R6501/R6511, as well as
peripheral devices, such as:

 R6520 Peripheral Interface Adapter (PIA)
 R6522 Versatile Interface Adapter (VIA)
 R6551 Asynchronous Communications Interface Adapter (ACIA)
 R6545 CRT Controller (CRTC)

The R65F11 and R65F12 Microcomputers are organized as shown in Figure 9-1 with
its registers occupying 32 addresses as listed in T able 9-1. R65F11/R65F12
interface operates in accordance with the settings of four internal control
registers.

 a. The Mode Control Register (MCR) determin es the type bus structure
 selected, latching of Port B, and the op erating modes of Timers A
 and B.

 b. The Serial Channel Control Register (SCC R) determines serial
 transmitter and receiver enable and oper ation mode, the number of
 characters per data word, parity enable and parity odd/even settings.

 c. The Serial Channel Status register (SCSR) controls End of
 Transmission and Wake Up statuses of the serial channel.

 d. The Interrupt Enable Register (IER) dete r mines the ability of a
 particular hardware event to cause an IR Q interrupt.

See Figure 9-2 for the detail bit assignments of th ese registers. Note that
unlike most other R6500 peripheral devices, these s ingle chip microcomputers do
not have data direct ion registers to control the I/O ports. The port is put in a
reset state when RES is driven from low to high. T he registers and I/O ports
are configured as shown in Figure 9-3 before an ext ernal ROM is autostarted.

9.1 PARALLEL I/O

The R65F11 has 16 I/O lines grouped into two 8-bit ports. These two ports, Port
A and Port B, may be used either for input or outpu t. Each port line may be
programmed as an input or an output, either indepen dently or in groups of any
combination. A number of the I/O pins are multifunc tion. For example, the
serial channel lines use the Port A lines PA6 and P A7. These are protected from
normal port I/O instructions when they are programm ed to perform special
functions.

9-1

Figure 9-1. R65F11 and R65F12 Interface Diagram

9-2

Table 9-1. I/O and Internal Register Addresses

9-3

Figure 9-2. Register Bit Assignments

9-4

Figure 9-2. Register Bit Assignments (Continued)

9-5

The direction of the I/O lines are controlled by 8- bit port registers located in
page zero. There are no direction registers associa ted with the I/O ports, which
simplifies I/O handling. The I/O addresses are show n in Table 9-2.

Table 9-2. I/O Port Addresses

Figure 9-3. RES Initialization of I/O Ports and Reg isters

9-6

Inputs for Ports A and B are enabled by storing log ic 1's into all I/O port
register bits. This can be accomplished by entering :

 HEX FF PA C! FF PB C!

Since the two ports, Port A and Port B are adjacent in the memory map,

 FFFF PA!

accomplishes the same thing. A low input (<0.8V) s ignal causes a logic 0 to be
read when the contents of the port is fetched. A hi gh input (>2.0V) causes a
logic 1 to be read. A reset forces all I/O port reg isters to logic 1's thus
initially treating all I/O lines as inputs. The st atus of the input lines can
be read at any time, i.e.,

 PB C@

Note that this returns the actual status of the inp ut lines, not the data stored
in the I/O port register.

Port outputs are controlled by storing the desired I/O line output states into
the corresponding I/O port register bit positions. A logic 1 forces a high
output (>2.4V) while a logic 0 forces a low output (<0.4V).

The settings of the Mode Control Register (MCR) and the Serial Channel Control
Register (SCCR) determine whether Port A operates a s a standard 8-bit, bit
independent I/O port or serial I/O lines, counter I /O lines, or input data
strobe for Port B latching. Table 9-3 tabulates the control bit settings and
usage of Port A.

In addition to their normal I/O functions, PA0 and PA1 can detect positive going
edges, and PA2 and PA3 can detect negative going ed ges. A proper transition on
these pins will set a-corresponding status bit in t he IFR.

Port B can operate as an 8-bit, bit independent I/O port. This port also has a
useful function when used as an input port in that the input values can be
latches at a particular point in time based on a ha rdware event. If MCR bit 4
is set to a 1, reading Port B gives the value prese nt the last time PA0 was
pulsed (PA0 is positive edge sensitive.) By using t his feature the processor
does not have to continuously polled for an event o n Port B to know when to read
Port B. The value on Port B is instead preserved by the event in the Port B
latches until the processor has time to read the po rt. Caution should be
exercised when using Port B since the bank switch i nstructions also use Port B.
If the bank instructions are not used, however, the re is no conflict.

9-7

Table 9-3. Port A Control and Usage

9-8

9.2 SERIAL I/O

The R65F11/R65F12 Microcomputers provide a full dup lex serial I/O channel with
programmable bit rates and operating modes. The ser ial I/O functions are
controlled by the Serial Channel Control Register (SCCR). The SCCR bit
assignments are shown in Figure 9-2. The bit rate, sometimes referred to as baud
rate, is determined by Counter/Timer A for all mode s except the -Receiver Shift
Register mode which requires an external clock. Th e maximum data rate using the
internal clock is 62.5K bits per second. This assu mes a 2 MHz internal clock.
The transmitter and receiver can be independently o perated in different modes.
They can also be independently enabled or disabled.

The RSC-FORTH Operating System initializes the seri al channel for asynchronous
operation with both the receiver and transmitter en abled, seven bits per
character and no parity. Counter/Timer A is set to the interval timer. With the
one exception of the Receiver Shift Register Mode, which uses the external
clock, all transmitter and receiver bits rates occu r at one sixteenth of the
Counter/Timer A interval timer rate. Counter/Timer A is forced into the
interval timer mode whenever one of these other ser ial modes is selected.
Counter/Timer A must be loaded with the correct val ue for the desired serial
rate. The RSC-FORTH Operating System sets the baud rate for 1200 baud (assuming
a 1 MHz internal clock) at power up. The operator or an application program can
change the baud rate to whatever value desired.

Table 9-4 shows values for standard baud rates. Th e serial channel can be
altered to these values as illustrated by

 HEX XXXX 18 !

where XXXX is the desired hex value from Table 9-4 and 18 is the address of
Counter/Timer A.

The transmitter operation and the transmitter relat ed control/status functions
are enabled by bit 7 of the SCCR. The transmitter, when in asynchronous mode,
automatically adds a start bit, one or two stop bit s, and when enabled, a parity
bit to the transmitted data. A word of transmitted data in the asynchronous mode
can have 5, 6, 7 or 8 bits of data. The nine possib le data modes are shown in
Figure 9-4. When parity is disabled, the 5, 6, 7 or 8 bits are terminated with
two stop bits. When parity is enabled words with 4, 6, or 7 bits end with two
stop bits. Those with 8 bits are allowed only one stop bit.

To calculate a desired baud rate in FORTH enter the following:

 DECIMAL 1000000. (. means double-precision)
 16 9600 *
 U/ DROP 1- .

Instead of a final print command, . , enter HEX 18 ! to establish, the baud
rate.

9-9

Table 9-4. Counter A Values for Baud Rate Selectio n

Figure 9-4. Serial Communication Bit Allocations
9-10

In the Shift Register Mode, eight data bits are alw ays used. The serial data is
shifted out via the SO output on pin PA6, as it is in the asynchronous mode. The
serial clock, however, is available at the CA line, PA4, only in the transmitter
shift register mode.

The receiver and its selected control and status fu nctions are enabled when the
SCCR Bit 6 is set to a 1. In the asynchronous mode incoming words must have one
start bit, the appropriate number of data bits and parity, and one stop bit.

Framing error, over-run and parity error conditions , or a Receiver Data Register
Full condition, will set the appropriate bits in th e Serial Channel Status
Register (SCSR). If enabled, an IRQ will be genera ted whenever any of these
bits, SCSR0-SCSR3, are true. Serial words received are available in the Serial
Channel Data Register (SCDR) by character fetch. Wo rds can be transmitted by
character storing bytes in the SCDR when the status flags indicate transmitter
data register empty.

9.3 COUNTER TIMERS

The R65F11/R65F12 Microcomputers contain two 16-bit counter/timers and three 16-
bit latches. Each of the two counters, A and B, can be independently programmed
to operate in one of four selectable modes. Counter A supports an Interval
Timer, Event Counter, Pulse Width Measurement and P ulse Generation Mode.
Counter B has an Internal Timer, Event Counter, Ret riggerable Interval Timer and
Asynchronous Pulse Generation Mode.

The operating modes of the counter/timers are contr olled by the Mode Control
Register (MCR). All counting begins at the initiali zed values and decrements
from there. When modes are selected requiring a cou nter input/output line, PA4
is automatically selected for Counter A and PA5 for Counter B.

9.3.1 Counter A

Counter A consists of a 16-bit counter and a 16-bit latch organized as follows:
Lower Counter A (LCA), Upper Counter A (UCA), Lower Latch A (LLA), and Upper
Latch A (ULA). The counter contains the count of ei ther � 2 clock pulses or
external events, depending on the counter mode sele cted. The contents of Counter
A may be read any time by executing a read at locat ion 0019 for the Upper
Counter A and at location 001A or location 0018 for the Lower Counter A. A read
at location 0018 also clears the Counter A Underflo w Flag (IFR4).

The 16-bit latch contains the counter initializatio n value, and can be loaded at
any time by executing a write to the Upper Latch A at location 0019 and the
Lower Latch A at location 0018. In either case, th e contents of the accumulator
are copied into the applicable latch register.

Counter A can be started at any time be writing to address 001A. The contents
of the accumulator will be copied into the Upper La tch A before the contents of
the 16-bit latch are transferred to Counter A. Cou nter A is set to the latch
value whenever Counter A underflows. When Counter A decrements from 0000 the
next counter value will be the latch value, not FFF F, and the Counter A
Underflow Flag (IFR4) will be set to a 1. This bit may be cleared by

9-11

reading the Lower Counter A at location 0018, by wr iting to address location
001A, or by RES. Counter A operates in any of four modes. These modes are
selected by the Counter A Mode Control bits in the Control Register.
See Table 9-5.

Table 9-5. Counter A Control Bits

The Interval Timer, Pulse Generation, and Pulse Wid th Measurement Modes are � 2
clock counter modes. The Event Counter Mode counts the occurrences of an
external event on the CNTR line.

 a. Interval Timer Mode

 The Counter is set to the Interval Timer M ode (00) when a RES signal is
 generated.

 In the Interval Timer mode, the Counter is initialized to the Latch
 value by either of two conditions:

 1. When the Counter is decremented from 00 00, the next Counter value
 is the Latch value (not FFFF).

 2. When a write operation is performed to the Load Upper Latch and
 Transfer Latch to Counter address 001A, the Counter is loaded
 with the Latch value. Note that the con tents of the Accumulator
 are loaded into the Upper Latch before the Latch value is
 transferred to the Counter.

 The Counter value decrements by one co unt at the � 2 clock rate.
 The 16-bit Counter can hold from 1 to 65535 counts. The Counter
 Timer capacity is therefore 1 � s to 65.535 ms at the 1 MHz � 2
 clock rate or 0.5 � s to 32.767 ms at the 2 MHz � 2 clock rate
 Time intervals greater than the maximu m Counter value can be
 easily measured by counting IRQ interr upt requests in the
 application program IRQ interrupt rout ine.

9-12

 When Counter A decrements from 0000, t he Counter A Underflow
 (IFR4) is set to logic 1. If the Coun ter A Interrupt Enable
 Bit (IER4) is also set, an IRQ interru pt request will be
 generated. The Counter A Underflow bi t in the Interrupt Flag
 Register can be examined in the IRQ in terrupt routine to
 determine that the IRQ was generated b y the Counter A Underflow.

 While the Timer is operating in the In terval Timer Mode, PA4
 operates as a PA I/O bit.

 A timing diagram of the Interval Timer Mode is shown in Figure 9-5.

 b. Pulse Generation Mode

 In the Pulse Generation mode, the CA line operates as a Counter
 Output. The line toggles from low to high or from high to low
 whenever a Counter A Underflow occurs, or a write is performed
 to address 001A.

 The normal output waveform is a symmetrica l square-wave. The CA
 output is initialized high when entering t he mode and transitions low
 when writing to 001A.

Figure 9-5. Interval Timer Timing Diagram

9-13

 Asymmetric waveforms can be generated by c hanging from Pulse
 Generation to Interval Timer mode after on ly one occurrence of the
 output toggle condition.

 c. Event Counter Mode

 In the Event Counter mode, CA is used as a n Event Input line, and the
 Counter decrements with each rising edge d etected on this line.
 The maximum rate at which this edge can be detected is one-half the � 2
 clock rate.

 The Counter can count up to 65,535 occurre nces before underflowing.
 As in the other modes, the Counter A Under flow bit (IER4) is set to
 logic 1 if the underflow occurs. See Figur e 9-6.

 d. Pulse Width Measurement Mode

 This mode allows the accurate measurement of a low pulse duration on
 the CA line. The Counter decrements by one count at the � 2 clock
 rate as long as the CA line is held in the low state. The Counter is
 stopped when CA is in the high state.

 The Counter A underflow flag is set only w hen the count in the timer
 reaches zero. Upon reaching zero the timer is loaded with the latch
 value and continues counting down as long as the CA pin is held low.
 After the counter is stopped by a high lev el on CA, the count holds
 as long as CA remains high. Any further lo w levels on CA will again
 cause the counter to count down from its p resent value. The state of
 the CA line can be determined by testing t he state of PA4.

 A timing diagram for the Pulse Width Measu rement Mode is shown in
 Figure 9-7.

 e. Serial I/O Data Rate Generation

 As mentioned earlier, Counter A also provi des clock timing for the
 Serial I/O which establishes the data rate for the Serial I/O port.
 When the Serial I/O is enabled, Counter A is forced to operate at the
 internal clock rate. Counter A is not req uired for the Receiver S/R
 mode. The Counter I/O (PA4) may also be re quired to support the
 Serial I/O.

Table 9-4 identifies the values to be loaded in Cou nter A for selecting standard
data rates with a � 2 clock rate of 1 MHz and 2 MHz. Although Table 9-4
identifies only the more common data rates, any dat a rate from 1 to 62.5K bps
can be selected by using the formula:

 � 2
 N = ---------- - 1
 16 x bps

9-14

Figure 9-6. Event Counter Mode

Figure 9-7. Pulse Width Measurement

9-15

where

 N = decimal value to be loaded into Counter A using its hexadecimal
 equivalent.
 � 2 = the clock frequency (1 MHz or 2 MHz)
 bps = the desired data rate.

In Table 9-4 you will notice that the standard data rate and the actual data
rate may be slightly different. Transmitter and re ceiver errors of 1.5% or less
are acceptable. A revised clock rate is included in Table 9-4 for those baud
rates which fall outside the limit. Using a 2.4576M Hz will give accurate Baud
rates.

9.3.2 Counter B

Counter B consists of a 16-bit counter and two 16-b it latches organized as
follows: Lower Counter B (LCB), Upper Counter B (U CB), Lower Latch B (LLB),
Upper Latch B (ULB), Lower Latch C (LLC), and Upper Latch C (ULC). Latch C is
used only in the asymmetrical pulse generation mode . The counter contains the
count of either 22 clock pulses or external events depending on the counter mode
selected. The contents of Counter B may be read an y time by executing a read at
location 001D for the Upper Counter B and at locati on 001E or 001C for the Lower
Counter B. A read at location 001C also clears the Counter B Underflow Flag.

Latch B contains the counter initialization value, and can be loaded at any time
by executing a write to the Upper Latch B at locati on 001D and the Lower Latch B
at location 001C. In each case, the contents of th e accumulator are copied into
the applicable latch register.

Counter B can be initialized at any time by writing to address 001E. The
contents of the accumulator is copied into the Uppe r Latch B before the value in
the 16-bit Latch B is transferred to Counter B. Co unter B is also be set to the
latch value and the Counter B Underflow Flag bit (I FR5) is set to a 1 whenever
Counter B underflows below 0000.

IFR5 may be cleared by reading the Lower Counter B at location 001C, by writing
to address location 001E, or by RES. Counter B ope rates in the same manner as
Counter A in the Interval Timer and Event Counter m odes. The Pulse Width
Measurement Mode is replaced by the Retriggerable I nterval Timer mode and the
Pulse Generation mode is replaced by the Asymmetric al Pulse Generation Mode.

 a. Retriggerable Interval Timer Mode

 When operating in the Retriggerable Interv al Timer mode, Counter B is
 initialized to the latch value by writing to address 001E, by a
 Counter B underflow, or whenever a positiv e edge occurs on the CB pin
 (PA5). The Counter B interrupt flag will b e set if the counter

9-16

 underflows before a positive edge occurs o n the CB line. Figure 9-8
 illustrates the operation.

 b. Asymmetrical Pulse Generation Mode

 Counter B has a special Asymmetrical Pulse Generation Mode whereby a
 pulse train with programmable pulse width and period can be generated
 without processor intervention once the la tch values are initialized.

 In this mode, the 16-bit Latch B is initia lized with a value which
 corresponds to the duration between pulses (referred to as D in the
 following description). The 16-bit Latch C is initialized with a
 value which corresponds to the desired pul se width (referred to as P
 in the following description). The initial ization sequence for Latch
 B and C and the starting of a counting seq uence are as follows (see
 Figure 9-9):

 1. The lower 8 bits of P are loaded into LLB by writing to address
 001C, and the upper 8 bits of P are lo aded into ULB and the full
 16 bits are transferred to Latch C by writing to address
 location 001D. At this point both Latc h B and Latch C contain
 the value of P.

 2. The lower 8 bits of D are loaded into LLB by writing to address
 001C, and the upper 8 bits of D are lo aded into ULB by writing
 to address location 001E. Writing to a ddress location 001E also
 causes the contents of the 16-bit Latc h B to be downloaded into
 the Counter B and caused the CB output to go low as shown in
 Figure 9-9.

 3. When the Counter B underflow occurs th e contents of the Latch C
 is loaded into the Counter B, and the CB output toggles to a
 high level and stays high until anothe r underflow occurs.
 Latch B is then down-loaded and the CB output toggles to a
 low level repeating the whole process.

9-17

Figure 9-8. Counter B Retriggerable Interval Timer Mode

Figure 9-9. Counter B Pulse Generation

9-18

SECTION 10

NOTES ON STYLE AND PROGRAM DEVELOPMENT

10.1 GENERAL

Like most other programming languages FORTH is not particularly readable to
someone who is not familiar with it. Because FORTH is unique among programming
languages even experienced programmers have difficu lty at first — FORTH is
unlike their past experience. After reading this ma nual FORTH should be
understandable and some practice in coding will sha rpen the eye. The key to
easily readable FORTH code lies in logical factorin g of key words and in
choosing appropriate names for words.

Correct FORTH code should read in an almost natural English way for the higher
level key words if these practices are followed. Fa ctoring means writing a word
as a collection of lower level words that actually name the functions performed
by this word. These lower level words in turn are made up of other still lower
level words which more precisely define the task ac complished by the word.
Finally, you will arrive at a level which uses most ly regular FORTH words and is
the most fundamental level, not particularly obviou s to anyone but the system
programmer, and then only when coding the word and for a short time afterwards.

Comments are necessary to understanding the operati on of words. What may be
perfectly clear to you today will not be next month or to another equally
qualified programmer at any time. Comment in simpl e statements using the
appropriate FORTH word names adjacently where you c an. Be a bit more detailed
than you think necessary when you write them, since they will be a bit too
obscure later if you don't. However, comments are not tutorials to the novice
or non-programmer. Too much verbiage obscures the p rogram flow in a sea of text.
Commentary documentation that must speak to the non -programmer should be written
elsewhere in a companion document.

Comments given at the start of a FORTH word should include a simple statement
about what the word takes from and leaves on the st ack.

10.2 EXAMPLE PROGRAM

To illustrate the style and comment forms described above, look at the many
examples elsewhere in this manual and you will see the top-down approach in use,
and reasonable comments that can be included on a p rinter. This section takes as
an example simple problem of figuring the miles a c ar traveled per gallon of
fuel from data kept in a common automobile record b ook.

 a. Problem Definition

 Start with the definition

 miles traveled
 mpg = �������������
 gallons used

10-1

 which is fine if you record mileage and ga llons and you aren't
 particular about accuracy. For the newer automobiles, an error of a
 tenth of a gallon can cause an error of 0. 5 mpg in the result.

 For best accuracy you should accumulate mi leage and gasoline used
 over several fill-ups. This averages your error in filling the tank
 non-uniformly and then by recording the da ta carefully you can have
 an accurate picture of your gas mileage.

 miles amount
 mpg = ———————, but gallons = ——————— ,
 gallons price

 so

 miles
 —————— miles(price)
 mpg = amount = ————————————
 —————— amount
 price

 However, miles is not the odometer reading , it is the miles traveled,
 and the odometer will require a correction factor, so

 miles = (m1-m0)k m0 = last odo meter reading
 m1 = current odometer
 readi ng
 k = correcti on factor
 therefore,

 (m1-m0)kp p = price
 mpg = —————————— a = amount
 a

 But price is either in cents per gallon or cents per liter, and since
 you are probably interested in miles per g allon you will have to
 multiply any cents per liter prices by 3.7 85 to correct to cents per
 gallon.

 Finally,

 (m1-m0)kp
 mpg = ————————— for cents/gallon
 a

 or

 (m1-m0)k 3785p
 mpg = ———————— (—————) for cents/gal lon
 a 1000

 To be efficient when doing more than one g as mileage check, the
 current odometer reading should be saved a s m0 for the next calculation.

10-2

 b. Scaling

 To correctly scale the calculation for int eger computation, you must
 first decide the level of precision desire d in the answer. If you
 want mpg to a tenth of a mile per gallon, distance in miles, price to
 a tenth of a cent and amounts in cents, th en

 (m1-m0)p(10)
 mpg(10) = —————————————
 a

 If we enter p without the decimal, we get p times 10 automatically
 and the result will come out in 10's of mi le per gallon as desired.

 c. Program Design, Coding and Checkout

 If the data are recorded in a data book as miles, price, and amount,
 it is convenient to enter them as written, therefore the stack would
 look like this:

 m1 p a

 and they would all be 16-bit numbers.

 Given the data on the stack as described a bove and the odometer
 correction and price adjustment necessary, the principle word looks
 (without any comments) like this:

 : ?MPT ROT TRUE-MILES ROT CENTS/ GAL
 ROT */ .MPG ;

 where the ROT words bring the stack values up to be operated on by
 the fairly obvious correction and adjustme nt words. The */
 computes the final operation

 mp
 ——
 a

 and the word .MPG prints the answer out in a nice format with a
 decimal point where we expect it.

 Now that we have the 'top' level structure , let us define the lower
 level words TRUE-MILES , CENTS/GAL and .MPG

 It is not necessary but a convenience to u se two memory storage
 locations in this calculation, one constan t for k and a variable
 where we can store the current odometer re ading (m1) to use as the
 last odometer reading (m0) for the next c alculation.

 Start with the word .MPG and use the nor mal FORTH output formatting
 words except include a decimal point in th e output text string with
 the phrase 46 HOLD and embellish the resul t with the ending "MPG" .

10-3

 Enter the program source code in a FORTH s creen if mass storage is
 available. Notice that blank lines (enter <SPACE> followed by
 <RETURN>) aid in source code readability.

 (MPG PROGRAM)

 (CONST & VARIABLES)
 103 CONSTANT K
 0 VARIABLE OLD

 : .MPG (MPG * 10 --- . DISPLAY MPG)
 S->D <# # (1 DIG.)
 46 HOLD (DEC. PT.)
 #S #> (FINISH IT)
 CR TYPE ." MPG " ;

 The test of .MPG puts a few numbers on the stack before the test
 number 456 and then execute .MPG along wit h .S to see that the
 stack contents have not been altered.

 1 2 3 456 .MPG .S
 45.6 MPG
 3
 2
 1 OK

 With .MPG working correctly, define TRUE-M ILES which uses */ as
 a scaling operator. The constant k (deriv ed for each odometer and
 set of tires separately) is multiplied by the miles traveled (M -
 OLD) and then divided by 100. The decis ion point for CENTS/GAL
 tells if the price for a gallon or liter i s $1.00 and should be
 correct for a while yet. The adjustment f or liter prices is

 3785
 p————
 1000

 which results in cents per gallon equivale nt.

 Now enter the rest of the code-definitions :

 : TRUE-MILES (ODOMETER --- . ADJUST MILEAGE)
 OLD @ (OLD #)
 OVER OLD ! (NEW #)
 - (MILES)
 K (CORRECTION)
 100 */ (ADJUST) ;

 : CENTS/GAL (PRICE --- . CONVERT PR ICE)
 DUP (FOR COMPARE)
 1000 < (? < $1.00)
 IF (CENTS/LITER)
 3785 100 */
 THEN ;

10-4

 : ?MPG (ODO PRICE AMT ---. DISPLAY MPG)
 ROT (GET ODOMETER)
 TRUE-MILES
 ROT (GET PRICE)
 CENTS/GAL
 ROT (GET AMOUNT)
 */ (COMPUTE MPG)
 .MPG (& PRINT) ;
 <RETURN>

 If any errors occur during compilation, ch eck the source code for
 entry errors. Compile each word separately , if needed, to verify
 proper coding by bracketing each word with parenthesis before the
 word (before the :) and after the word (after the ;) as comments.

 d. Program Final Testing

 The testing of ?MPG involves entering some known values into it and
 observing the results. Don't forget to set the OLD value for the
 odometer reading first, as shown below. Th en enter test values on
 the stack for the current odometer reading , the price, and the miles
 traveled.

 3198 OLD ! OK
 3457 1199 841 ?MPG
 37.9 MPG OK
 3665 1169 1038 ?MPG
 24.1 MPG OK
 3839 1199 1063 ?MPG
 20.1 MPG OK
 4017 1339 1150 ?MPG
 21.3 MPG OK
 4200 1329 997 ?MPG
 25.0 MPG OK
 OLD ? 4200 OK

 Finally, if you want to put the decimal po ints in the input numbers,
 remember that RSC-FORTH interprets this as a 32-bit number. So, for
 every number with a decimal point in it, y ou will have two 16-bit
 numbers on the stack.

 e. Program Enhancement

 You can redefine word ?MPG which will take such numbers and
 rearrange them to be acceptable to the ori ginal ?MPG . This time
 the input is in whole miles, cents and a t enth and dollars.

 The 32-bit numbers go on the stack with th e most significant part on
 top. Since none of the numbers are even c lose to using the most
 significant 16-bit part, simply drop them off the stack at the
 appropriate place and use the old version of ?MPG .

10-5

 : ?MPG (ODO CENTS $ ---. COMPUTE MP G)
 DROP (UNUSED WD.)
 SWAP (OTHER ONE)
 DROP (IT TOO)
 ?MPG (USE IT OVER)
 ;
 <RETURN>

 Now test it with miles, cents and a tenth, and dollars.

 3198 OLD ! OK
 3457 119.9 8.41 ?MPG

 37.9 MPG OK

 Check to be sure OLD was updated.

 OLD ? 3457 OK

10-6

SECTION 11

PREPARING AN APPLICATION PROGRAM FOR PROM INSTALLATION

It is often desirable to install an application pro gram written in FORTH into
one or more PROM/ROM devices for immediate operatio n upon microcomputer power
turn-on, i.e., without requiring entry into the FOR TH interpreter, or
recompilation of the application FORTH source code. This section describes a
method to develop an application program written in FORTH as normal or target
compiled headerless code, how to locate it for exec ution from either RAM or
PROM/ROM, and how to cause one word to be autostart executed at power on or
reset.

The RSC-FORTH System was designed to easily autosta rt a dedicated program. The
RSC-FORTH Operating System initializes all variable s required by the kernel at
reset then searches for an external user program to autostart. Functions
included in the development ROM that make preparati on of programs for PROM/ROM
easy.

11.1 PROGRAM DEVELOPMENT

The first step in preparing an application for PROM is, naturally, to develop
the program itself. There are a number of viable o ptions to choose from, but
some sort of development system must be created. T he RSC-FORTH system is truly
unique in that the target system which the program is being developed for, can
actually be the system used to do the development. The only additional cost in
designing a product that can be its own development system is the overhead
required to support the development ROM, a 28-pin s ocket and decode logic.

It is entirely possible to do complete developments for small systems just as
stated. Mass storage, however, is certainly require d when the program size
increases. There are two likely ways to accommodate mass storage. One is to
have the mass storage be a part of the RSC-FORTH sy stem, e.g., add a floppy disk
controller and associated circuitry. The other is to stick with a minimal RSC-
FORTH system and use a host system to download sour ce code to the target system.
This host could be another RSC-FORTH system, an AIM 65 Microcomputer, AIM 65/40
Microcomputer or other microcomputer system with ma ss storage. The only real
requirement on such a host system is that text can be entered and edited, then
transferred over a serial channel compatible with t he RSC-FORTH serial channel
and respond to XON/XOFF protocol. It would also be desirable if the host could
act as a terminal so direct communications with the R65F11 of R65F12 could be
used during testing.

Most of the considerations made for PROM-based syst ems depend on the nature of
the target system. The deciding factor is largely the memory allocation. First,
it must be determined if the final target system re quires any external RAM.
Dedicated applications that do all I/O functions by manipulating the port lines
(for example: a traffic light controller) can rely entirely on the stack to
provide temporary storage. Applications that requir e a small array area (i.e.,
magnetic badge readers) can directly refer to the l ower stack area. Locations
$0060 to $00A0 are usually safe since normal stack depths do not exceed 16 words
at a time.

11-1

The print functions such as . , ? , D.R , # , e tc., make use of the area of
PAD and therefore must use external RAM at 0300. T he terminal input routines,
such as QUERY , EXPECT , etc., use the Terminal I nput Buffer (TIB) at address
$0380. For these and other applications that requir e disk operations or large
block of memory external RAM is a must.

The R65FR1 Development ROM initializes RSC-FORTH to start its dictionary at
$0400, the first 1K-byte boundary. If no RAM is re quired in the final system
and the program is small, i.e., less than 1K bytes, the RSC-FORTH development
system can be as simple as the one shown in Figure 2-2. The program can then be
developed in the RAM and dumped to a PROM programme r. After PROM programming,
the RAM device can be removed and replaced with the PROM, such as a 2716. Only
the last half of the PROM would be used, but this w ould still be a very cost
effective solution.

If RAM is required in the final system, or more tha n 1K-byte of program is to be
generated, an additional RAM will have to be added to the development system
shown in Figure 2-2. Decoding logic will also need to be changed accordingly.
The program will be developed in the second RAM, at address $0800 to $0FFF and
replaced with a EPROM.

To move the program to the second RAM at power on, enter:

 FORGET TASK HEX 400 ALLOT : TASK ;

The lower addressed RAM can remain in the target sy stem if needed. By allotting
blocks in multiples of $0400, any 1K-byte boundary can be used for the autostart
vector.

Another independent question to be addressed is tha t of normal or target
compiled code. No action is required if normal cod e is desired. In order to
initiate target compilation, action must be taken a t power on. The sequence

 FORGET TASK HEX 600 H/C : TASK ;

causes codes to be generated at address $0404 and u p and dictionary heads to be
placed at $0600 and up.

Depending on the system configuration and RAM avail able the codes might need to
be at other addresses. A combination of the two met hods above might be required.

For example:

 FORGET TASK HEX 400 ALLOT 1800 H/C : TASK;

puts tie codes at address $0800 and the heads at $1 800.

After a program has been entered, tested and debugg ed and re-entered in the
correct memory location and compiled format, it is ready to have the autostart
pattern added. This is the very last step before t ransferring the image to
PROM. This should be done with great caution. Onc e a program is set for
program autostart, the development ROM cannot be re entered by RESET.

11-2

Addition of the autostart pattern is extremely easy . The word AUTOSTART
generates the autostart pattern and loads the vecto r to the definition to be
autostarted. AUTOSTART requires only an address spe cifying where the autostart
pattern is to be placed and the name of the routine to autostart. For example,
if GO-TO-IT was the main routine of a dedicated app lication;

 HEX 800 AUTOSTART GO-TO-IT

puts A55A at address $800 followed by a pointer tha t identifies the location of
the PFA of GO-TO-IT. The value stored there is the equivalent of ' GO-TO-IT @
.

Once the RAM image is established the PROM can be m ade by using ADMP to transfer
the RAM image to a PROM programmer or using the EEC ! functions described in
Section 6.

In summary, the steps to enter a program into EPROM is as follows:

 a. Write, enter, test and debug the applicat ion program on the
 development system. Save the source code.

 b. Enter COLD to initialize the RSC-FORTH Sy stem.

 c. Enter FORGET TASK to remove the linkage t o TASK .

 d. If moving the address of the target code area, enter

 XXXX ALLOT or YYYY DP!

 where XXXX = number of bytes to mo ve the starting address from $0400.
 YYYY = actual starting address to be used .

 NOTES: XXXX must be multiple of 1024 ($40 0).
 YYYY should be four bytes from a 1 K-boundary
 (i.e., $804, $C04, $1004, etc .) to leave
 room for a preceding autostar t pattern.
 Watch the number base when en tering!

 e. If using target compiled code, enter

 ZZZZ H/C

 where ZZZZ = the address to put the dicti onary heads to be generated.
 These do not necessarily need to be saved for the final system.

 f. Re-enter the source code to recompile. Th is can be done with LOAD
 from disk or SOURCE from a host computer.

11-3

 g. Add the autostart pattern, i.e., enter

 AAAA AUTOSTART <name>

 where AAAA = 1K-page boundary to be used and <name> is the main
 starting point-routine.

 h. Transfer the image to PROM with ADMP or E EC! as described in
 Section 6.

11-4

SECTION 12

INTERFACING TO MASS STORAGE

12.1 OVERVIEW

RSC-FORTH includes all of the fundamental words nee ded to interface with, and
effectively use, mass storage devices. This chapte r provides directions and
guidelines on how to interface to a floppy disk, ho wever, the procedure may be
easily modified to include other peripherals.

Before you begin, you must have a mass storage devi ce in correct functioning
order, and you must have enough memory added to the R65F11 or R65F12
microcomputer to hold two FORTH screens. The minim um RAM requirement for
buffers is 2056 bytes, but a practical minimum for the system is 4K bytes,
although 6K is more reasonable and a full 8K is bet ter.

12.1.1 Mass Storage Terminology

FORTH accesses mass storage in uniformly-sized piec es called blocks, and keeps
data, or source code, in RAM in 1024-byte pieces ca lled screens. If the block
buffer is 1024 bytes, then the terms 'block' or 'sc reen' are often used
interchangeably. Since these block sizes are commo nly the size of a floppy disk
sector of 128 or 256 bytes, there are normally eigh t or four blocks per screen,
respectively, however, in RSC-FORTH, the floppy int erface reads multiple sectors
from the floppy at once. Therefore, the block size and the buffer size is the
same as the screen size.

 a. Block Buffer

 A particular block is referenced by the FO RTH word BLOCK which takes
 the block number as the argument. If the b lock of data is in RAM,
 BLOCK returns immediately with the address of the buffer where the
 data is to be found. If the block is not in RAM, BLOCK uses R/W
 (described below) to fetch it from mass st orage and put it in a
 buffer in RAM, then returns the address of that buffer. BLOCK also
 checks to see if the data in a particular buffer needs to be written
 out to mass storage before it uses the buf fer for new data.

 Each block buffer in RAM is four bytes lar ger than the mass storage
 block size. Two of these extra bytes are at the end of the buffer
 and both contain ASCII null characters ($0 0) to mark the end of data.
 The other two bytes, located at the start of the buffer, contain the
 block number and a one-bit flag (MSB) that indicates whether or not
 the buffer contains data that must be writ ten to mass storage before
 the buffer can be used for new data. The layout of a block buffer is:

12-1

 b. Data Buffer

 The RAM area reserved for use by mass stor age, commonly called the
 data buffer area, or the mass storage buff er area, must contain two
 or more of the block buffers described abo ve. The first byte of the
 entire mass storage buffer area is referen ced by the word FIRST and
 is stored in the variable UFIRST . The last byte of the entire
 buffer area is located at LIMIT -1 and th e value returned by the
 word LIMIT is kept in ULIMIT . The la yout of the buffer area is:

12-2

 c. Screen Size

 Conventionally, when a screen of source co de is listed on a CRT
 display, it appears as 16 lines of 64 char acters each. The lines are
 numbered 0 to 15 on the left of the text.

12.1.2 Buffer Variables

The number of blocks and the size and location of t he data buffer in RSC-FORTH
is controlled by two user variables (UFIRST and UL IMIT). The logic of which
one to use at any given time is controlled by three other variables (PREV ,
USE , and OFFSET). The names, description and ac cess words for these
variables are given in Table 12-1.

12.2 SETTING UP BLOCK AND DATA BUFFERS

R/W is the primary word that interfaces FORTH to ma ss storage. All of the FORTH
logic which automatically handles the locating, rea ding and writing of mass
storage data ultimately winds up using R/W . Howeve r, before R/W can work
properly, it must have a set of data buffers to use . As explained earlier, RSC-
FORTH needs at least two buffers in order for the b uffer rotation logic to work
correctly.
The general steps in the process of setting up the block and data buffers is a
simple procedure as summarized below; the details a re given in the following
section.

 1. Set the top (high RAM) of the data buffer area into ULIMIT .
 2. Compute and set the start of the data buff er area into UFIRST .
 3. Set USE and PREV to FIRST .
 4. Clear the data buffer.
 5. Initialize the block offset value.

In many cases, steps 1 and 2 can be omitted. The de fault value of the top of RAM
for ULIMIT is a good choice, unless special circu mstances dictate that another
value should be used. MEMTOP may be used instead, MEMTOP sets LIMIT and
FIRST (see below)!

In steps 3 and 4, it is convenient to use FORTH to compute the actual values to
store and to setup and clear the buffers to use. T he FORTH word EMPTY BUFFERS
performs both these functions.

Steps 1, 2, 3 and 4 can be replaced if a standard t wo-buffer memory area is
desired. Entering XXX MEMTOP , where XXX is the wor d that would be put in ULIMIT
from step 1, accomplishes all the above tasks autom atically.

Step 5 is necessary if a value other than zero is d esired as FORTH adds this
offset value to each block number requested via R/W . The utility of OFFSET is
in setting it to the first block number in an extra mass storage device. Then
the block numbers of media inserted in that device will be the same to the user
as when OFFSET is zero and the media is in the prim ary device. This is important
if there is more than one disk drive.

12-3

Table 12-1. Buffer Variables, Constants, and Acces s Words

12-4

12.3 USING MASS STORAGE

The simplicity of the disk interface and FORTH's ab ility to customize to a
particular application allows mass storage devices to be easily used in powerful
ways. Two such ways are described in this section. Remember all mass storage
operations must use diskettes that are first format ted with either FORMAT or a
similar word.

12.3.1 Data Storage and Retrieval - the Virtual RAM

Data storage and retrieval using a mass storage dev ice is quite simple. Just
think of the data as an array of numbers, and, give n the element number of a
data item in the array, compute the required block number and offset into that
block. Knowing the block number, all that is left t o do is to access the block
and add the offset to the address returned by BLOC K .

Suppose you want to process an array of 250 16-bit numbers and you wish the data
to start at block 25. If the disk uses 256-byte bl ocks, a word that would
supply the RAM address of a given array element num ber (0-249) would look like:

 : DATA 128 /MOD 25 + BLOCK SWAP 2 * + ;

The address produced by DATA can then be used like any other variable address.
The normal FORTH words @ and ! would then fetch and store data as if it were
always in RAM. One extra modification would be app ropriate here — the word !
should automatically indicate that data was put int o a disk buffer so that the
buffer will be written out automatically. This is e asily done by redefining !
and @ as U! and U@ :

 (value index ——)
 : U! DATA ! UPDATE ;
 (index —— value)
 : U@ DATA @ ;

The actual use of DATA is shown by a couple of exam ples. To print the 153rd
number, simply type:

 153 U@ .

To clear out the entire array use:

 : CLEAR 250 0 DO 0 I U! LOOP FLUSH ;

(The word FLUSH at the end writes all updated buffe rs out to the mass storage
device.)

12-5

12.3.2 Program Loading and Overlays

Once a screen has been written with a FORTH program , it is necessary to compile
the program into the dictionary. This is done with LOAD , which takes the
screen number from the stack and begins compiling t hat screen, starting at line
0 and continues until a ;S is encountered. The ; S terminator may be placed
at any position, and any number of ;S words may a ppear on a screen, but FORTH
will always stop compiling at the first ;S encoun tered.

Programs of more than one screen may be compiled bu t only if the screens are
contiguous. Each screen, except for the last, must end with the word --> , and
the last screen must be terminated with ;S . Com pilation starts with a LOAD
of the first screen in the sequence.

With a disk connected to an RSC-FORTH microcomputer with 18K-bytes of RAM, you
can run quite large programs in FORTH by dividing t he program into convenient-
sized pieces and using program overlays. The techn iques for using program
overlays are — like the disk data storage — quite s traightforward. Use the FORTH
words FORGET and LOAD to overlay programs.

Suppose you have a program that consists of three p arts: input, processing and
output. If these three parts do not need to be res ident in RAM all at the same
time, they can be loaded and run sequentially.

First, construct what is called a load screen, whic h contains the directions for
loading and executing the entire program. Suppose the source code of the input
part of the program is in screens 12, 13 and 14, th e source code for the
processing part is in screens 30, 31 and 32, and th e output source code is in
screens 33 to 35. Further suppose that some data ma nipulating words are in
screen 102 and 103, and that these words are common ly used by the three overlays
of the program. The resulting load screen might loo k like this:

 FORGET TASK : TASK ; (CLEANS DICTIONARY)
 102 LOAD 103 LOAD (DATA WORDS)
 : INPUT 12 LOAD 13 LOAD 14 LOAD ;
 : PROCESS 30 LOAD 31 LOAD 32 LOAD ;
 : OUTPUT 33 LOAD 34 LOAD 35 ;
 : LEVEL ; INPUT

Each of the three overlay programs, INPUT , PROCE SS and OUTPUT , should
have the phrase

 FORGET LEVEL : LEVEL ;

in the first screen to be loaded. This phrase disc ards the previous overlay and
makes room in the dictionary for the next overlay. The process of overlays is
started by interpreting the word INPUT in the loa d screen. Note that the
three overlay words are defined before the dummy word LEVEL . This ensures
that the overlay words will not be forgotten by the overlays themselves.

12-6

The process of overlaying can be a manually directe d one, or if desired, the
next overlay can be called as the last action of th e current overlay. The
process of overlaying can then continue indefinitel y and unattended.

The methods outlined above for enhanced use of mass storage are very useful in
actual practice even though the methods are quite s imple. FORTH is capable of
much more. By using the defining words <BUILDS a nd DOES> , different classes
of new FORTH words can be created to take advantage of other mass storage or
external facilities.

12.4 SOURCE CODE EDITING

The many different mass storage devices, terminals and user preferences make it
impossible to provide more than a start at putting source code onto FORTH
screens. Four useful words for manipulating charact er data are already supplied
in RSC-FORTH, namely (LINE) , .LINE , >LINE a nd LIST . The following code
defines a word useful for initializing screens used for text, called WIPE .

 SCR #13
 0 (WORD TO CLEAR SCREENS>)
 1
 2 (S - S WIPE BLANKS etc.
 3 : WIPE BLOCK 1024 BLANKS
 4 UPDATE FLUSH ;
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15 ;S

The words LIST and >LINE work together in that a screen should be listed
before text is placed in it with >LINE . The act of listing a screen makes
that screen the current screen and operations are d irected to it.

The word LIST uses .LINE to output 16 lines of 64 characters each. LIST
also prints the screen number and the number of eac h line, for reference when
placing text in that screen. Given the line number as a parameter, the word
>LINE fetches the current screen number then place s blanks in that line before
moving the following text string into it. Once the text is in the proper
buffer, >LINE flags the buffer as having new data in it, and that data will
automatically be written to mass storage if the buf fer is needed.

The word WIPE takes the screen number left on the stack and fills all of its
blocks with spaces, thus preparing the screen for e diting. Because WIPE
overwrites anything written in the screen, it must be used with caution.

12-7

The words are used like this:

 10 WIPE

places blanks in screen 10, and

 10 LIST

verifies this.

To enter text, use >LINE like this:

 3 >LINE THIS LINE OF TEXT GOES ON LINE 3.

This text will be placed on line 3, and the rest of line 3 will be blanked, in
case there was old text on it.

Use >LINE to place text into screens to make a si mple editor. Test these
words by loading the screens and trying them out. T hen use the simple editor to
make a enhanced editor that takes advantage of any features that your particular
setup has.

After a screen has been created or edited, the new information must be written
to the disk before that screen is compiled. This c an be done with a FLUSH
before the LOAD .

12-8

APPENDIX A

RSC-FORTH FUNCTIONAL SUMMARY

This appendix contains a summary of the RSC-FORTH w ord definitions, grouped by
area of primary function. Consult Appendix B for t he detailed definition of
each word.

Stack Notation

The stack operation is denoted in the parentheses. The symbols on the left
indicate the order in which input parameters must b e placed on the stack prior
to FORTH word execution. Three dashes (---) indicat es the FORTH word execution
point. Any parameters left on the stack after execu tion are listed on the right.
The top of the stack is to the right.

Symbol Definition

n,n1,... 16-bit signed number

d,d1,... 32-bit signed number

u,u1,... 16-bit unsigned number

ud,ud1,... 32-bit unsigned number

addr,addr1... address

b 8-bit byte (with eight high bits zero)

c 7-bit ASCII character value (with nine h igh bits zero)

f Boolean flag (zero - false, non-zero = t rue)

ff Boolean false flag (value = zero)

tf Boolean true flag (value = non-zero)

A.1 STACK MANIPULATION

 DUP (n --- n n) Duplicate the number on the stack.
 2DUP (d --- d d) Duplicate the top double
 or (n1 n2 --- number (or t he top two
 n1 n2 n1 n2) numbers) on the stack.
 DROP (n ---) Delete the top number on the stack.
 2DROP (d ---) Delete the top double
 or (n1 n2 ---) number (or t he top two numbers) on
 the stack.
 SWAP (n1 n2 --- n2 n1) Exchange the t op two numbers on
 the stack.
 OVER (n1 n2 --- Copy second nu mber on
 n1 n2 n1) the stack to the top.
 ROT (n1 n2 n3 --- Rotate the thi rd number
 n2 n3 n1) on the stack to the top.
 -DUP (n --- n ?) Duplicate the top number on the stack
 only if it i s non-zero.

A-1

A.1 STACK MANIPULATION (Continued)
 >R (n ---) Move top ite m to Return Stack.
 R> (--- n) Retrieve ite m from Return Stack.
 R (--- n) Copy top of Return Stack onto stack.
 PICK (n --- nth) Copy the nth item to top.
 SP@ (--- addr) Return addre ss of stack top position.
 RP@ (--- addr) Return addre ss of the return stack
 pointer.
 .S (---) Display stac k contents without
 modifying the stack.
 SP! (---) Initialize P arameter Stack.

A.2 NUMERIC REPRESENTATION

 DECIMAL () Set decimal base.
 HEX () Set hexadeci mal base.
 BASE (--- addr) System vari able containing number base.
 DIGIT (---) Convert ASCI I to binary.
 0 (--- 0) The number z ero.
 1 (--- 1) The number o ne.
 2 (--- 2) The number t wo.
 3 (--- 3) The number t hree.
 4 (--- 4) The number f our.

A.3 ARITHMETIC AND LOGICAL

 + (n1 n2 --- sum) Add two 16-b it numbers.
 D+ (dl d2 --- sum) Add two 32-b it numbers.
 - (n1 n2 --- diff) Subtract (n1 -n2).
 * (n1 n2 --- prod) Multiply.
 / (n1 n2 --- quot) Divide (n1/n 2).
 MOD (n1 n2 --- rem) Modulo (i.e. , remainder from division).
 /MOD (n1 n2 --- Divide, givi ng remainder
 rem quot) and quotie nt.
 */MOD (n1 n2 n3 Multiply, th en divide
 --- rem quot) (n1*n2/n3) , with double intermediate.
 */ (n1 n2 n3 --- Like */MOD , but give
 quot) quotient o nly.
 U* (u1 u2 --- ud) Unsigned mul tiply leaves double product.
 U/ (ud u1 --- u2 u3) Unsigned rem ainder and quotient from
 double div idend.
 M* (n1 n2 --- d) Signed multi plication leaving double
 product.
 M/ (d n1 --- n2 n3) Signed remai nder and quotient from
 double div idend.
 M/MOD (ud1 u2 --- u3 ud4) Unsigned div ide leaving
 double quo tient and remainder from
 double div idend and single divisor.
 MAX (n1 n2 --- max) Maximum.

A-2

A.3 ARITHMETIC AND LOGICAL (Continued)

 MIN (nl n2 --- min) Minimum.
 +- (nl n2 --- n3) Set sign, n3 = nl times the sign of n2.
 D+- (dl n --- d3) Set sign of double number.
 ABS (n --- absolute) Absolute val ue.
 DABS (d --- absolute) Absolute val ue of double number.
 NEGATE (n --- -n) Change sign.
 DNEGATE (d --- -d) Change sign of double number.
 S->D (n --- d) Sign extend single number to double
 number.
 1+ (nl --- nl+1) Increment by 1.
 2+ (nl --- nl+2) Increment by 2.
 1- (nl --- nl-1) Decrement by 1.
 2- (nl --- nl-2) Decrement by 2.
 AND (nl n2 --- and) Logical AND (bitwise).
 OR (nl n2 --- or) Logical OR (bitwise).
 XOR (nl n2 --- xor) Logical excl usive OR (bitwise).
 -BCD (ul --- u2) Connect a nu mber to its BCD equivalent.
 BOUNDS (addr n --- Convert star t addr and
 addr r + n addr) count to sta rt and stop addresses.

A.4 COMPARISON OPERATORS

 < (nl n2 --- f) True if nl l ess than n2.
 > (nl n2 --- f) True if nl g reater than n2.
 = (nl n2 --- f) True if top two numbers are equal.
 0< (n --- f) True if top number negative.
 0= (n --- f) True if top number zero (i.e., reverses
 truth valu e).
 U< (ul u2 --- f) True if ul l ess than u2.
 NOT (f --- f') Reverse Bool ean value (same as 0 =).

A.5 CONTROL STRUCTURES

 DO ... LOOP (end+1 start --- Set up loop, given index
 ... loop) rang e.
 DO ... n (end+1 start --- Like DO...LOO P , but
 +LOOP ... n +loop) add stack value (instead of always
 '1') to in dex.
 I (--- index) Place curren t index value on stack.
 LEAVE (---) Terminate lo op at next LOOP or +LOOP.
 BEGIN BEGIN ... f UNTIL Loop back to BEGIN until
 ... UNTIL true at UN TIL .
 BEGIN ... BEGIN ... f Loop while tr ue at
 WHILE ... WHILE ... REPEAT WHILE ; R EPEAT loops
 ... REPEAT uncondition ally to BEGIN
 BEGIN ... Unconditiona l loop.
 AGAIN
 IF ... THEN if: (f ---) If top of sta ck true, execute.

A-3

A.5 CONTROL STRUCTURES (Continued)

 IF ... ELSE if: (f ---) Same, except that if top
 ... THEN stack fals e, execute ELSE clause.
 END Alias for UN TIL .
 ENDIF Alias for TH EN .
 BANKEXECUTE (addr n ---) Execute the d efinition with CFA of addr
 from bank n. Return to current bank.

A.6 MEMORY

 @ (addr --- n) Replace word address by contents.
 ! (n addr ---) Store second word at address on top.
 C@ (addr --- b) Fetch one by te only.
 C! (b addr ---) Store one by te only.
 ? (addr ---) Print conten ts of address.
 +! (n addr ---) Add second n umber on stack to contents
 of address on top.
 CMOVE (from to n ---) Move n bytes in memory.
 FILL (addr n b ---) Beginning at addr, fill
 n bytes in memory with b.
 ERASE (addr n ---) Beginning at addr, fill n bytes in
 memory wit h Zeroes.
 BLANKS (addr n ---) Beginning at addr, fill n bytes in
 memory wit h blanks.
 TOGGLE (addr b ---) Exclusively OR byte at addr with byte b.
 EEC! (b addr n ---) Program byte b into addr for n clock
 cycles.
 BANKC@ (addr n --- b) Fetch one by te at addr from bank n.
 BANKC ! (b addr n ---) Store one by te b at addr in bank n.
 BANKEEC ! (b addr nl n2 ---) Program byte b into addr for nl clock
 cycles, in bank n2.

A.7 INPUT-OUTPUT

 . (n ---) Print number ASCII string.
 CR (---) Output a car riage return and line feed
 to the ser ial line.
 SPACE (---) Type one spa ce.
 SPACES (n ---) Type n space s.
 ." (---) Print messag e (terminated by ").
 DUMP (addr n ---) Dump n byte s starting at address using
 current ba se.
 TYPE (addr n ---) Type string of n characters starting at
 address.
 ?TERMINAL (--- f) True if any key is depressed.
 KEY (--- c) Read key, pu t ASCII value on stack.
 EMIT (c ---) Output ASCI I value from stack.
 EXPECT (addr n ---) Read n chara cters (or until carriage
 return) fr om input to address.
 WORD (c ---) Read the ne xt text character string.
 IN (--- addr) User variabl e containing current offset
 within inp ut buffer.

A-4

A.7 INPUT-OUTPUT (Continued)

 BL (--- c) Put a SPACE character
 (ASCII $20) on the stack.
 C/L (--- n) Maximum numb er of characters/line.
 TIB (--- addr) Terminal Inp ut Buffer start addr.
 QUERY (---) Input text f rom terminal.
 ID. (addr ---) Print <name> given name field address
 (NFA).
 ;DUMP (addr n ---) Dump n bytes starting at addr in ASCII
 format in one semicolon record.
 ADMP (addr1 addr2 ---) Dump bytes f rom addr1 to addr2 in ASCII
 format in as many semicolon records
 as require d. Also send closing record.
 " "(NULL) (---) Executed at end of each input or screen
 line. Not used by user.

A.8 OUTPUT FORMATTING

 NUMBER (addr --- d) Convert stri ng at address to
 double-pre cision number.
 <# (---) Start output string.
 # (|d| — |d|) Convert next digit of double-precision
 number and add character to output
 string.
 #S (|d| --- 00) Convert all significant digits of
 double-pre cision number to output
 string.
 SIGN (n |d| --- |d|) Insert sign of n into output string.
 #> (|d| --- addr u) Terminate ou tput string (ready for TYPE).
 HOLD (c ---) Insert ASCII character into output string.
 HLD (--- addr) Hold pointer , user variable.
 -TRAILING (addr nl --- Suppress tra iling blanks.
 addr n2)
 .LINE (line SCR ---) Display line of text from mass storage.
 COUNT (addr1 --- Count and a ddress of
 addr+1 n) message te xt.
 .R (n fieldwidth ---) Print number ASCII string
 right-just ified in field.
 D. (d ---) Print double number ASCII string.
 D.R (d fieldwidth ---) Print double number ASCII string
 right-just ified in field.
 DPL (--- addr) Address of n umber of digits to the
 right of d ecimal point.

A-5

A.9 MONITOR

 COLD (---) RSC-FORTH co ld start.
 MON (---) Exit to RSC- FORTH Monitor.
 CLD/WRM (--- addr) User variabl e containing the COLD/WARM
 flag. Whe n equal to A55A, reset
 does warm start, otherwise does cold
 start.
 SOURCE (---) Interpret in put from active input
 device wit h XON/XOFF protocol.
 FINIS (---) End of file marker for input via
 SOURCE .
 XON (---) Restores inp ut vector.
 Emits "ON" character for XON/XOFF
 protocol.
 XOFF (---) Emits "OFF" character for XON/XOFF
 protocol.

A.10 COMPILER-TEXT INTERPRETER

 ;S (---) Stop interpr etation.
 [COMPILE] (<name> ---) Force compil ation of IMMEDIATE word.
 LITERAL (n --- n) Compile a nu mber into a literal.
 DLITERAL (d --- d) Compile a do uble number into a literal.
 EXECUTE (addr ---) Execute the definition CFA on top of
 stack.
 [(---) Suspend comp ilation, enter execution.
] (---) Resume compi lation.
 IMMEDIATE (<name> ---) Forces execu tion when compiling.
 INTERPRET The Text Int erpreter executes or
 compiles.
 STATE (--- addr) User variab le containing compilation
 state.

A.11 DICTIONARY CONTROL

 CREATE (---) Create a dic tionary header.
 FORGET (<name> ---) FORGET all d efinitions from <name>.
 HERE (--- addr) Returns addr ess of next unused byte in
 the dictio nary.
 ALLOT (n ---) Leave a gap of n bytes in the
 dictionary .
 TASK (---) A dictionar y marker null word.
 ' (<name> --- addr) Find the PFA of <name> in the
 -FIND found: (<name> --- dictionary .
 PFA b tf) <name> Search dicti onary for
 not found: (<name> <name>.
 --- ff)

A-6

A.11 DICTIONARY CONTROL (Continued)

 C, (b ---) Compiles byt e into dictionary.
 , (n ---) Compile a nu mber into the dictionary.
 PAD (--- addr) Pointer to t emporary buffer.
 LATEST (--- addr) Leave name f ield address (NFA) of top
 word in CU RRENT .
 SMUDGE (---) Toggle name SMUDGE bit.
 HERE/ (--- addr) Returns add ress of next unused byte in
 heads dict ionary or codes dictionary.
 ALLOT/ (n ---) Leave a gap of n bytes in the heads
 dictionary or codes dictionary.
 ,/ (n ---) Compile a nu mber into the heads
 dictionary or codes dictionary.
 HEADERLESS (--- addr) User variabl e containing headerless
 code flag. If equal to one, above
 "/" words, use code dictionary; if
 not, use h eads dictionary.
 AUTOSTART (addr <name> ---) Prepare auto start vector at addr which
 will cause <name> to be executed upon
 reset. Not e: addr must.be on a
 1K-byte bo undary.
 TRAVERSE (addr n --- addr) Adjust addr positively or negatively
 until cont ents of addr is greater
 then $7F.
 ?KERNEL (<name> ---) Checks <name > to see if code is in
 kernel. D isplay IN or OUT
 accordingl y.
 H/C (addr ---) Separates he ads and codes portions of
 definition to different place in
 memory.
 HWORD (---) Moves codes portion of last defined
 word from the codes memory to the
 heads memo ry.
 NFA (pfaptr --- nfa) Alter parame ter field pointer address
 to name fi eld address.
 PFAPTR (nfa --- pfaptr) Alter name f ield address to parameter
 field poin ter address.
 LFA (pfaptr --- Ifa) Alter parame ter field pointer address
 to link fi eld address.

A.12 DEFINING WORDS

 : <name> (---) Begin colon definition of <name>.
 ; (---) End colon de finition.
 VARIABLE Compilation: Create a var iable
 (n --- <name>) named <nam e> with
 Execution: initial va lue n;
 (<name> --- addr) returns ad dress when executed.

A-7

A.12 DEFINING WORDS (Continued)

 CONSTANT Compilation: Create a cons tant named
 (n --- <name> <name> wit h value n;
 Execution: returns va lue when
 (<name> --- n executed.
 CODE <name> (---) Begin definit ion of assembly-language
 primitive operation named <name>.
 ;CODE (---) Used to cre ate a new defining word, with
 execution- time "code routine" for this
 data type in assembly.
 <BUILDS.. Compilation: Used to crea te a new
 DOES> <BUILDS ... defining w ord, with
 Execution: ... execution- time routine
 DOES> ... for this d ata type in
 higher-lev el FORTH.
 USER Offset user <name> Create a use r variable.
 CASE: <name> (---) Begin case s tatement definition.
 C,CON Compilation: Create byte c onstant named
 (n --- <name>) <name> wit h value n;
 Execution returns ad dress when
 (<name> --- address) executed.

A. 13 VOCABULARIES

 CONTEXT (--- addr) Returns addr ess of pointer to
 CONTEXT vo cabulary.
 CURRENT (--- addr) Returns addr ess of pointer to
 CURRENT vo cabulary.
 FORTH (---) Main FORTH vo cabulary (execution
 of FORTH s ets CONTEXT vocabulary).
 ASSEMBLER (---) Assembler voc abulary;
 sets CONTE XT .
 DEFINITIONS (<name> ---) Sets CURRENT vocabulary to
 CONTEXT .
 VOCABULARY (--- <name>) Create new v ocabulary named
 <name>.
 VLIST (---) Print names of all words in
 CONTEXT vo cabulary.
 VOC-LINK (--- addr) Most recentl y defined vocabulary.

A.14 MASS STORAGE

 LOAD (screen ---) Load editing screen into buffer and
 compile or execute. Automatically
 saves prio r buffer contents if
 necessary.
 BLOCK (block --- addr) Load editin g screen into buffer and
 compile or execute. Automatically
 stores pri or contents of buffer if
 necessary.

A-8

A.14 MASS STORAGE (Continued)

 B/BUF (--- n) System cons tant giving mass storage
 block size in bytes.
 B/SCR (--- n) Number of b locks/editing screen.
 BLK (--- addr) System varia ble containing current
 block numb er.
 SCR (--- addr) System varia ble containing current
 screen num ber.
 UPDATE (---) Mark last bu ffer accessed as updated.
 FLUSH (---) Write all u pdated buffers to disk.
 EMPTY-BUFFERS (---) Erase all bu ffers.
 +BUF (addrl --- addr2 f) Increment bu ffer address.
 BUFFER (n --- addr) Fetch next m emory buffer.
 LIST (n ---) List a scree n to the current output
 device.
 --> (---) Interpret ne xt screen.
 R/W (addr blk f -) User read/wr ite linkage.
 USE (--- addr) Variable con taining address of next
 buffer.
 PREV (--- addr) Variable con taining address of latest
 buffer.
 FIRST (--- n) Leaves addr ess of first block buffer.
 LIMIT (--- n) Top of memo ry.
 OFFSET (--- addr) User variabl e block offset to mass
 storage.
 MEMTOP (n ---) Sets LIMIT t o n, FIRST to n-$C0C.
 DISKNO (--- addr) User variabl e currently selected
 disk.
 CYLINDER (--- addr) User variabl e four bytes, each byte holds
 current tr ack for each
 of four di sk drives.
 B/SIDE (--- addr) User variabl e blocks per side per
 drive.
 DISK (addr n b ---) Accesses dis k, read if b=l, write if
 b=0 block number n at addr.
 SELECT (n ---) Selects disk drive n, n=0-3.
 SEEK (n ---) Seeks track n on selected drive.
 DREAD (addr n --- err) Reads multi ple (4) disk sectors starting
 at sector 4n + 1 of selected disk,
 current tr ack to addr and leaves
 the disk e rror byte.
 DWRITE (addr n --- err) Writes multip le (4) disk sectors starting
 at sector 4n + 1 of selected disk,
 current tr ack to addr and leaves
 the disk e rror byte.
 INIT (---) Sets current tracks in CYLINDER to
 $FF's, whi ch forces recalibration
 on next di sk access.
 FORMAT (nl n2 ---) Format nl tr acks on disk number n2.
 FMTRK (nl n2 ---) Format trac k nl on side n2 of the
 selected d isk.
 >LINE (n <text> ---) Puts text f ollowing into line n of
 current sc reen in buffer.

A-9

A.14 MASS STORAGE (Continued)

 INDEX (nl n2 ---) List the fi rst lines of all screens
 n1 thru n2 .

A.15 MISCELLANEOUS AND SYSTEM

 (<comment>)(---) Begin comment , terminate by right
 parenthese s on same line.
 CFA (pfaptr --- cfa) Alter parame ter field pointer address
 to code fi eld address.
 QUIT (---) Clear Return Stack and return to terminal.
 SCDR (--- addr) Returns addr of Serial Channel Data
 Register.
 SCSR (--- addr) Returns addr of Serial Channel Status
 Register.
 SCCR (--- addr) Returns addr of Serial Channel Control
 Register.
 MCR (--- addr) Returns addr of Mode Control Register.
 IER (--- addr) Returns addr of Interrupt Enable Register.
 IFR (--- addr) Returns addr of Interrupt Flag Register.
 PG (--- addr) Returns addr of Port G.
 PF (--- addr) Returns addr of Port F.
 PE (--- addr) Returns addr of Port E.
 PD (--- addr) Returns addr of Port D.
 PC (--- addr) Returns addr of Port C.
 PB (--- addr) Returns addr of Port B.
 PA (--- addr) Returns addr of Port A.
 NMIVEC (--- addr) Returns addr of low level Non-Maskable
 Interrupt (NMI) vector.
 IRQVEC (--- addr) Returns addr low level Interrupt
 Request (I RQ) vector.
 INTVEC (--- addr) Returns addr high level FORTH interrupt
 vector.
 INTFLG (--- addr) Returns addr of high level FORTH
 interrupt flag.

A. 16 SECURITY

 !CSP (---) Store stack position into check stack
 pointer.
 ?COMP (---) Error if no t compiling.
 ?CSP (---) Check stack position.
 ?ERROR (---) Outputs erro r message.
 ?EXEC (---) Not executin g error.
 ?PAIRS (---) Conditional not paired error.
 ?STACK (---) Stack out of bounds error.
 CSP (---) User variabl e for check stack pointer.
 ABORT (---) Error ...op eration terminates.

A-10

A.16 SECURITY (Continued)

 ERROR (line --- in blk) Execute erro r notification and restart
 system.
 MESSAGE (n ---) Displays mes sage number n.
 WARNING (--- addr) Flag for to message routine.
 FENCE (--- addr) Prevents FOR GET below this point.
 WIDTH (--- addr) Controls th e number of significant
 characters of <name>.

A. 17 PRIMITIVES

 (.") (---) Run-time pr ocedure compiled by ." .
 (;CODE) (---) Run-time pro cedure compiled by ;CODE
 (+LOOP) (n ---) Run-time pro cedure compiled by +LOOP .
 (ABORT) (---) Run-time pro cedure compiled by ABORT .
 (DO) (limit+1 Run-time pro cedure compiled by DO .
 start ---)
 (FIND) (addrl addr2 --- Searches the dictionary.
 pfa b ff)
 (addr1 addr2 ---
 ff)
 (LINE) (nl n2 --- Virtual stor age line
 addr count) primitive.
 (LOOP) (---) Run-time pro cedure compiled by LOOP .
 (NUMBER) (---) Converts ASC II to numeric.
 0BRANCH Run-time con ditional branch.
 BRANCH (---) Run-time unc onditional branch.
 CLIT (---) Indicates si ngle character literal.
 ENCLOSE (addr c --- Text scannin g by WORD .
 addr nl n2 n3)
 R0 (--- addr) Location of Return Stack base.
 S0 (--- addr) Location of Parameter Stack base.
 RP! (---) Initializes Return Stack.
 LIT (--- n) Place 16-bit literal on the stack.

A. 18 PARAMETER

 DP (--- addr) Puts Diction ary Pointer address on stack.
 DP/ (--- addr) Puts Diction ary Pointer address of
 Heads on s tack.
 UABORT (--- addr) Puts address of code field for Abort on
 stack.
 UC/L (--- addr) Puts address of number of
 characters /line on stack.
 UFIRST (--- addr) Puts first a ddress of data buffer on
 stack.
 ULIMIT (--- addr) Puts last +1 address of data buffer on
 stack.
 UPAD (--- addr) Puts address of temporary storage PAD
 on stack.

A-11

A.18 PARAMETER (Continued)

 UR/W (--- addr) Puts code fi eld address on stack.
 KHZ (--- addr) Unused user variable.
 MODE (--- addr) Assembler va riable.

A-12

APPENDIX B

RSC-FORTH GLOSSARY

This glossary contains the definition of all words in the RSC-FORTH vocabulary.
The definitions are presented in ASCII sort order.

Stack Notation

The first line of each entry shows a symbolic descr iption of the action of the
procedure on the parameter stack. The symbols on th e left indicate the order in
which input parameters have been placed on the stac k. Three dashes " —— "
indicate the execution point; any parameters left o n the stack after execution
are listed on the right. In this notation, the top of the stack is to the
right.

Symbol Definition

addr ,addr1,... memory address
b 8-bit (with high eight bits zero)
c 7-bit ASCII character (with high nine bits zero)
d,di,... 32-bit signed double integer, mo st significant portion with
 sign on top of stack
flag Boolean flag (0=false, non-zero= true)
ff Boolean false flag (value = 0)
n,n1,... 16-bit signed integer number
u,u1,... 16-bit unsigned integer number
ud,udi,... 32-bit unsigned number
tf Boolean true flag (value = non-z ero)

Pronunciation

The natural language pronunciation of FORTH names i s given in double quotes (").

Integer Format

Unless otherwise noted, all references to numbers a re for 16-bit signed
integers. The high byte of a number is on top of th e stack, with the sign in the
left-most bit. For 32-bit signed double numbers, th e most significant part (with
the sign) is on top.

All arithmetic is implicitly 16-bit signed integer math, with error and
underflow indication unspecified.

Capitalization

Word names as used within the glossary are conventi onally written in upper case
characters. Lower case is used when reference is ma de to the run-time machine
codes (not directly accessible), e.g., VARIABLE is the user word to create a
variable. Each use of that variable makes use of a code sequence 'variable'
which executes the function of the particular varia ble.

B-1

Attributes (ATTR)

Capital letters show definition characteristics:

C May only be used within a colon-definition. A digit indicates number of
 memory addresses used, if other than one.
E Intended for execution only.
I Indicates that the word is IMMEDIATE and will execute during compilation,
 unless special action is taken
P Has precedence bit set. Will execute even when compiling.
U A user variable.

Group Key Words (GROUP)

The following key words identify the functional gro up (see Appendix A) that each
word is most related to.

 STACK Stack Manipulation

 NUMERIC Numeric Representation

 ARITHMETIC Arithmetic and Logical

 COMPARISON Comparison Operators

 CONTROL Control Structures

 MEMORY Memory

 I/O Input/Output

 FORMAT Output Formatting

 MONITOR Monitor

 COMPILER Compiler - Text Interpreter

 DICTIONARY Dictionary Control

 DEFINING Defining Words

 VOCABULARY Vocabularies

 MASS Mass Storage

 MISC Miscellaneous and System

 SECURITY Security

 PRIMITIVE Primitives

 ASSEMBLER Assembler Dictionary

 PARAMETER Parameter Used in FORTH

B-2

WORD STACK NOTATION/DEFINITION GROUP ATTR

! n addr --- MEMORY
 "store"
 Stores 16-bit number n into addr.

! CSP --- SECURI TY
 "store CSP"
 Stores the stack position in CSP .
 Used as part of the compiler security.
 See CSP .

ud1 --- ud2 FORMAT
 "sharp"
 Generates the next ASCII character place d in an
 output string from ud1. Result ud2 is t he quotient
 after division by BASE, and is maintaine d for
 further processing. Use between <# and # > .
 See #S .

#> d --- addr n FORMAT
 "sharp-greater"
 Terminates numeric output conversion by dropping d,
 leaving the text address and character c ount n
 suitable for TYPE .

#S ud --- 0 0 FORMAT
 "sharp-s"
 Converts all digits of a ud adding each to the
 pictured numeric output text, until the remainder is
 zero, A single zero is added to the outp ut string
 if the number was initially zero.
 Use only between <# and #> .

' --- addr DICTIO NARY I
 "tick"
 Used in the form:

 ' <name>

 If executing, leaves the parameter field address of
 the next word accepted from the input st ream.
 If compiling, compiles this address as a literal;
 later execution will place this value on the stack.

 If the word is not found after a search of CONTEXT
 and FORTH vocabularies an error message is displayed.

B-3

WORD STACK NOTATION/DEFINITION GROUP ATTR

(MISC I
 "paren"
 Used in the form:

 (cccc)

 Accepts and ignores comment characters f rom the
 input stream, until the next right paren thesis.
 As a word, the left parenthesis must be followed
 by one blank. It may be freely used whi le executing
 or compiling. An error condition exists if the input
 stream is exhausted before the right par enthesis.

(.") PRIMIT IVE

 The run-time procedure, compiled by .", which
 transmits the following in-line text to the selected
 output device.
 See ." .

(;CODE) PRIMIT IVE

 The run-time procedure, compiled by ;COD E , that
 rewrites the code field of the most rece ntly defined
 word to point to the following machine c ode sequence.
 See ;CODE .

(+LOOP) PRIMIT IVE

 The run-time procedure compiled by +LOOP , which
 increments the loop index by n and tests for loop
 completion.
 See +LOOP .

(ABORT) PRIMIT IVE

 Executes after an error when WARNING is -1.
 This word normally executes ABORT , but may be altered
 (with care) to a user's alternative proc edure.
 See ABORT .

(DO) limit +1 start --- PRIMIT IVE

 The run-time procedure, compiled by DO , which moves
 the loop control parameters to the retur n stack.
 See DO .

B-4

WORD STACK NOTATION/DEFINITION GROUP ATTR

(FIND) PRIMIT IVE
 addr1 addr2 --- pfa byte tf (ok)
 addr1 addr2 --- ff (bad)

 Searches the dictionary starting at the name field
 address addr2, matching to the text at a ddr1.
 Returns parameter field address, length of name field
 byte and Boolean true for a good match.
 If no match is found, only a Boolean fal se is left.
 See -FIND .

(LINE) n1 n2 --- addr count PRIMIT IVE

 Converts the line number n1 and the scre en number n2
 to the disk buffer address containing th e data.
 A count of 64 indicates the full line te xt length.
 See .LINE .

(LOOP) PRIMIT IVE

 The run-time procedure, compiled by LOOP , which
 increments the loop index and tests for loop completion.
 See LOOP .

(NUMBER) d1 addr1 --- d2 addr2 PRIMIT IVE

 Converts the ASCII text beginning at add r1+1 with
 regard to BASE . The new value is accumu lated into
 d1, being left as d2. addr2 is the addre ss of the
 first unconvertable digit.
 See NUMBER .

* n1 n2 --- n3 ARITHM ETIC
 "times"
 Multiples n1 by n2 and leaves the produc t n3.

*/ n1 n2 n3 --- n4 ARITHM ETIC
 "times-divide"
 Multiplies n1 by n2, divides the result by n3 and
 leaves the quotient n4. n4 is rounded to ward zero.
 The product of n1 times n2 is maintained as an
 intermediate 32-bit value for a greater precision
 than the otherwise equivalent sequence:

 n1 n2 * n3 /

B-5

WORD STACK NOTATION/DEFINITION GROUP ATTR

*/MOD n1 n2 n3 --- n4 n5 ARITHM ETIC
 "times-divide-mod"
 Multiplies n1 by n2, divides the result by n3 and
 leaves the remainder n4 and quotient n5.
 A 32-bit intermediate product is used as for */ .
 The remainder has the same sign as n1.

+ n1 n2 --- n3 ARITHM ETIC
 "plus"
 Adds n1 to n2 and leaves the arithmetic sum n3.

+! n addr --- MEMORY
 "plus store"
 Adds n to the 16-bit value at the addres s,
 by the convention given for +.

+- n1 n2 --- n3 ARITHM ETIC
 "plus-minus"
 Applies the sign of n2 to n1 , which is left as n3.

+BUF addr1 --- addr2 flag MASS
 "plus-buf"
 Advances the virtual storage buffer addr ess (addr1)
 to the next buffer address (addr2).
 Boolean flag is false when addr2 is the buffer
 presently pointed to by variable PREV .

+LOOP n1 --- (run-time) CONTRO L IC
 addr n2 --- (compile-time)
 "plus-loop"
 Used in a colon-definition in the form:

 DO ... nl +LOOP

 At run-time, +LOOP selectively controls branching
 back to the corresponding DO based on nl , the loop
 index and the loop limit. The signed inc rement n1 is
 added to the index and the total compare d to the limit.
 The branch back to DO occurs until the n ew index is
 equal to or greater than the limit (n1 > 0) , or until
 the new index is equal to or less than t he limit
 (n1 < 0). Upon exiting the loop, the par ameters are
 discarded and execution continues.
 Index and limit are signed integers in t he range
 <-32,768..32,767>.

B-6

WORD STACK NOTATION/DEFINITION GROUP ATTR

+LOOP At compile-time, +LOOP compiles the run- time word
(Cont.) (+LOOP) and computes the branch offset f rom HERE
 to the address left on the stack by DO . n2 is
 used for compile time error checking.

, n --- DICTIO NARY
 "comma"
 Stores n into the next available diction ary memory
 cell, advancing the dictionary pointer.

,/ n --- DICTIO NARY
 "comma slash"
 Stores n into the next available heads d ictionary
 memory cell, advancing the dictionary po inter, DP/.

- n1 n2 --- n3 ARITHM ETIC
 "minus"
 Substracts n2 from n1 and leaves the dif ference n3.

--> MASS I
 "next-screen"
 Continues interpretation with the next v irtual
 storage screen.

-BCD u1 --- u2 ARITHM ETIC
 "b-c-d"
 Converts a number to its binary coded de cimal (BCD)
 equivalent.

-DUP n1 --- n1 (if zero) STACK
 n1 --- n1 n1 (non-zero)
 "minus-dup"
 Reproduces n1 only if it is non-zero.
 This is usually used to copy a value jus t before IF ,
 to eliminate the need for an ELSE clause to drop it.

B-7

WORD STACK NOTATION/DEFINITION GROUP ATTR

-FIND --- pfa b tf (found) DICTIO NARY
 --- ff (not found)
 "dash-find"
 Accepts the next text word (delimited by blanks)
 in the input stream to HERE , and search es the
 CONTEXT and then CURRENT vocabularies fo r a
 matching entry. If found, the dictionar y entry's
 parameter field address, its length byte , and a
 Boolean true is left. Otherwise, only a Boolean
 false is left.

-TRAILING addr n1 --- addr n2 FORMAT
 "dash-trailing"
 Adjusts the character count n1 of a text string
 beginning address to suppress the output of trailing
 blanks. The characters at addr+n1 to add r+n2 are
 blanks. An error condition exists if n1 is negative.

. n --- INPUT/ OUTPUT
 "dot"
 Displays the number on the top of a stac k.
 The number is converted from a signed 16 -bit two's
 complement value according to the numeri c BASE .
 The sign is displayed only if the value is negative.
 A trailing blank is displayed after the number.
 Also see D. .

." INPUT/ OUTPUT I
 "dot-quote"
 Used in the form:

 ." cccc"

 Accepts the following text from the inpu t stream,
 terminated by " (double-quote). If exec uting,
 transmits this text to the selected outp ut device.
 If compiling, compiles so that later exe cution will
 transmit the text to the selected output device.
 At least 127 characters are allowed in t he text.
 If the input stream is exhausted before the terminating
 double-quote, an error condition exists.

B-8

WORD STACK NOTATION/DEFINITION GROUP ATTR

.LINE n1 n2 --- FORMAT
 "dot-line"
 Displays a line of text from mass storag e by its
 line number n1 and screen number n2.
 Trailing blanks are suppressed.

.R n1 n2 --- FORMAT
 "dot-R"
 Displays number n1 right justified n2 pl aces.
 No trailing blank is printed.

.S STACK
 "dot-S"
 Displays the contents of the stack witho ut altering
 the stack. This word is very useful in d etermining
 the stack contents during debugging prog rams and
 learning FORTH.

/ n1 n2 --- n3 ARITHM ETIC
 "divide"
 Divides n1 by n2 and leave the quotient n3.
 n3 is rounded toward zero. The remainder is lost.

/MOD n1 n2 --- n3 n4 ARITHM ETIC
 "divide-mod"
 Divides n1 by n2 and leaves the quotient n4 and
 remainder n3. n3 has the same sign as n1 .

0 --- 0 NUMERI C
 "zero"
 The number zero is placed on top of the stack.

0< n --- flag COMPAR ISON
 "zero-less"
 Leaves a true flag (1) if the number is less than
 zero (negative), otherwise leaves a fals e flag (0).
 The number is lost.

0= n --- flag COMPAR ISON
 "zero-equals"
 Leaves a true flag (1) if the number is equal to
 zero, otherwise leaves a false flag (0).
 The number is lost.

B-9

WORD STACK NOTATION/DEFINITION GROUP ATTR

0BRANCH flag --- PRIMIT IVE
 "zero-branch"
 The run-time procedure to conditionally branch.
 If the flag is false (zero), the followi ng in-line
 parameter is added to the interpretive p ointer to
 branch ahead or back.
 Compiled by IF , UNTIL , and WHILE .

1 --- 1 NUMERI C
 "one"
 The number one is placed on top of the s tack.

1+ n --- n+1 ARITHM ETIC
 "one-plus"
 Increments n by one according to the ope ration of
 + .

1- n --- n-1 ARITHM ETIC
 "one-minus"
 Decrements n by one according to the ope ration of
 - .

2 --- 2 NUMERI C
 "two"
 The number two is placed on top of the s tack.

2+ n --- n+2 ARITHM ETIC
 "two-plus"
 Increments n by two according to the ope ration of
 + .

2- n --- n-2 ARITHM ETIC
 "two-minus"
 Decrements n by two, according to the op eration of
 - .

2DROP d --- STACK
 or n1 n2 ---
 "two-drop"
 Drops the top double number on the stack .

B-10

WORD STACK NOTATION/DEFINITION GROUP ATTR

2DUP d --- d d STACK
 or n1 n2 --- n1 n2 n1 n2
 "two-dup"
 Duplicates the top double number on the stack.

3 --- 3 NUMERI C
 "three"
 The number three is placed on top of the stack.

4 --- 4 NUMERI C
 "four"
 The number four is placed on top of the stack.

: DEFINI NG E
 "colon"
 A defining word used in the form:

 : <name> ... ;

 Selects the CONTEXT vocabulary to be ide ntical to
 CURRENT . Creates a dictionary entry fo r <name> in
 CURRENT , and sets the compile mode. Wor ds thus
 defined are called 'colon-definitions'.
 The compilation addresses of subsequent words from
 the input stream which are not immediate words are
 stored into the dictionary to be execute d when
 <name> is later executed. IMMEDIATE wor ds are
 executed as encountered.

 If a word is not found after a search of the CONTEXT
 and FORTH vocabularies conversion and co mpilation of
 a literal number is attempted, with rega rd to the
 current BASE ; that failing, an error co ndition exists.

; DEFINI NG I,C
 "semi-colon"
 Terminates a colon-definition and stops further
 compilation. If compiling from mass stor age and the
 input stream is exhausted before encount ering ; an
 error condition exists.

B-11

WORD STACK NOTATION/DEFINITION GROUP ATTR

;CODE DEFINI NG
 "semi-colon-code"
 Used in the form:

 : <name> ;CODE <assembly co de>
 END-CODE

 Stops compilation and terminates a new d efining word
 <name> by compiling (;CODE) . Sets the CONTEXT
 vocabulary to ASSEMBLER , assembling to machine
 code the following mnemonics.

 When <name> is later executed in the for m:

 <name> <namex>

 to define the new <namex>, the code fiel d address of
 <namex> will contain the address of the code
 sequence following the ;CODE in <name>.
 Execution of any <namex> will cause this machine code
 sequence to be executed.

;DUMP addr n --- I/O
 "semicolon dump"
 Dumps n bytes starting at addr in ASCII format in
 one semicolon record.

;S COMPIL ER
 "semi-colon-S"
 Stops interpretation of a screen. ;S is also the
 run-time word compiled at the end of a c olon-
 definition which returns execution to th e calling
 procedure.

< n2 --- flag COMPAR ISON
 "less-than"
 Leaves a true flag (1) if n1 is less tha n n2;
 otherwise leaves a false flag (0).

B-12

WORD STACK NOTATION/DEFINITION GROUP ATTR

<# d --- d FORMAT
 "less-than-sharp"
 Initializes the pictured numeric output format using
 the words:

 <# # #S HOLD SIGN #>

 # specifies the conversion of a double-p recision
 number into an ASCII character string st ored in
 right-to-left order, producing text at P AD .

<BUILDS DEFINI NG I,C
 Used within a colon-definition:

 : <name> <BUILDS ... DOES> ... ;

 each time <name> is executed, <BUILDS de fines a
 new word with a high-level execution pro cedure.
 Executing <name> in the form:

 <name> <namex>

 uses <BUILDS to create a dictionary entr y for <namex>
 with a call to the DOES> part for <namex >.
 When nnnn is later executed, it has the address of
 its parameter area on the stack and exec utes the words
 after DOES> in <name>. <BUILDS and DOES > allow
 run-time procedures to written in high-l evel rather
 than in assembler code (as required by ; CODE).

= nl n2 --- flag COMPAR ISON
 "equals"
 Leaves a true flag (1) if n1 is equal to n2;
 otherwise leaves a false flag (0).

> nl n2 --- flag COMPAR ISON
 "greater-than"
 Leaves a true flag (1) if n1 is greater than n2;
 otherwise a false flag (0).

>LINE n --- <text> MASS
 "to-line"
 Places the following text on line n of t he current
 screen as designated by SCR.

B-13

WORD STACK NOTATION/DEFINITION GROUP ATTR

>R n --- STACK
 "to-R"
 Removes a number from the computation st ack and
 places it as the most accessible number on the
 return stack. Use should be balanced wit h R> in
 the same definition.

? addr — MEMORY
 "question-mark"
 Displays the value contained at the addr ess on the
 top of the stack in free format accordin g to the
 current BASE. Uses the format of . .

?COMP SECURI TY

 Issues error message if not compiling.

?CSP SECURI TY

 Issues error message if stack position d iffers from
 value saved in CSP .

?ERROR SECURI TY

 Issues error message #1 (STACK EMPTY), i f the
 Boolean flag is true.

?EXEC SECURI TY

 Issues an error message if not executing .

?KERNEL --- DICTIO NARY
 "question kernel"
 Tests name following an input stream for code being
 inside or outside the RSC-FORTH kernel.
 "IN" or "OUT" is displayed accordingly.

?PAIRS n1 n2 --- SECURI TY

 Issues error message #19 (CONDITIONALS N OT PAIRED)
 if n1 does not equal n2. The message ind icates that
 compiled conditionals do not match.

B-14

WORD STACK NOTATION/DEFINITION GROUP ATTR

?STACK SECURI TY

 Issues error message #7 (FULL STACK) if the stack is
 out of bounds.

?TERMINAL --- flag INPUT/ OUTPUT

 Tests the terminal keyboard for actuatio n of any key.
 Generates a Boolean value. A true flag (1) indicates
 actuation, whereas a false flag (0) indi cates
 non-actuation.

@ addr --- n MEMORY
 "fetch"
 Leaves the 16-bit contents of the addres s on top of
 the stack.

ABORT SECURI TY
 "abort"
 Clears the stacks and enters the executi on state.
 Returns control to the serial keyboard.

ABS n --- u ARITHM ETIC
 "absolute"
 Leaves the absolute value of n as u.

ADMP addr1 addr2 --- I/O

 Dumps bytes from addr1 to addr2 in ASCII format in
 as many semicolon records as necessary.
 Also sends closing record.

AGAIN addr n --- (compile-time) CONTRO L
 "again"
 Used in a colon-definition in the form:

 BEGIN ... AGAIN

 At run-time, AGAIN forces execution to r eturn to
 the corresponding BEGIN . There is no ef fect on
 the stack. Execution cannot leave this loop
 (unless R> DROP is executed one level be low).

B-15

WORD STACK NOTATION/DEFINITION GROUP ATTR

AGAIN At compile-time, AGAIN compiles BRANCH with an
(Cont.) offset from HERE to addr.
 n is used for compile-time error checkin g.

ALLOT n --- DICTIO NARY
 "allot"
 Adds the signed number to the dictionary pointer DP .
 May be used to reserve dictionary space or re-origin
 memory, n is the number of bytes.

ALLOT/ n --- DICTIO NARY
 "allot slash"
 Adds the signed number to the dictionary pointer DP/ .
 May be used to reserve space in the head s dictionary
 or re-origin memory.

AND n1 n2 --- n3 ARITHM ETIC
 "and"
 Leaves the bit-wise logical AND of n1 an d n2 as n3.

ASSEMBLER VOCABU LARY I
 "assembler"
 Sets the vocabulary to ASSEMBLER .

AUTOSTART addr --- DICTIO NARY
 "autostart"
 Establishes autostart pattern of memory location
 addr. Bit pattern A55A is put at addr.
 Parameter Field Address (CFA+2) is place d at addr+2.

B/BUF --- n MASS
 "bytes-per-buffer"
 Leaves the number of bytes (value = 1024) per data
 buffer, the byte count read from mass st orage by
 BLOCK . The actual buffer size is four b ytes larger
 than this value.

B/SIDE --- addr MASS
 "blocks per side"
 User variable containing number of 1K-by te blocks
 per side per disk drive.

B-16

WORD STACK NOTATION/DEFINITION GROUP ATTR

B/SCR --- n MASS
 "blocks per screen"
 Leaves the number of blocks (value =1) p er FORTH
 screen. By convention, an editing screen is 1024
 bytes organized as 16 lines of 64 charac ters each.

BANKC@ addr n --- b MEMORY
 "bank c fetch"
 Fetches data b of bank n, address addr.

BANKC! b addr n --- MEMORY
 "bank c store"
 Stores data b in bank n, address addr.

BANKEEC! b addr n1 n2 --- MEMORY
 "bank e e c store"
 Stores data b in bank n1, address addr f or n2 cycles.
 Used in programming EEROM's and EPROM's.

BANKEXECUTE addr n --- CONTRO L
 "bank execute"
 Execute FORTH word with CFA of addr in b ank n.
 Restore to current bank upon return.

BASE --- addr NUMERI C
 "base"
 Leaves the address of the variable conta ining
 the current number base used for input a nd output
 conversion. The range of BASE is 2 thro ugh 70.

BEGIN --- addr n (compile-time) CONTRO L
 "begin"
 Occurs in a colon-definition in form:

 BEGIN ... flag UNTIL
 BEGIN ... AGAIN
 BEGIN ... flag WHILE ... REPEAT

 At run-time, BEGIN marks the start of a word
 sequence for repetitive execution.

B-17

WORD STACK NOTATION/DEFINITION GROUP ATTR

BEGIN A BEGIN-UNTIL loop will be repeated unti l flag is
(Cont.) true. A BEGIN-WHILE-REPEAT loop will be repeated
 until flag is false. The words after UN TIL or
 REPEAT will be executed when either loop is finished,
 flag is always dropped after being teste d.
 The BEGIN-AGAIN loop executes indefinite ly.

 At compile-time, BEGIN leaves its retur n address
 and n for compiler error checking.

BL --- char INPUT/ OUTPUT
 "blank"
 A constant that leaves the ASCII charact er value for
 "blank", i.e., $20. on top of stack

BLANKS addr n --- MEMORY
 "blanks"
 Fills an area of memory beginning at add r with the
 ASCII value for "blank", the number of b ytes
 specified by count n will be blanked.

BLK --- addr MASS U
 "b-l-k"
 Leaves the address of a user variable co ntaining the
 number of the mass storage block being i nterpreted
 as the input stream. If the content is zero, the
 input stream is taken from the terminal.

BLOCK n --- addr MASS
 "block"
 Leaves the first address of the block bu ffer
 containing block n. If the block is not already in
 memory, it is transferred from mass stor age to
 whichever buffer was least recently acce ssed.
 If the block occupying that buffer has b een marked
 as updated, it is rewritten onto mass st orage before
 block n is read into the buffer. If corr ect mass
 storage read or write is not possible, a n error
 condition exists. Only data within the l atest block
 referenced by BLOCK is valid by byte add ress, due
 to sharing of the block buffers, n is a n unsigned
 number. Also see BUFFER , R/W , UPDAT E and FLUSH .

B-18

WORD STACK NOTATION/DEFINITION GROUP ATTR

BOUNDS addr n --- add +n addr ARITHM ETIC
 "bounds"
 Bounds is equivalent to OVER + SWAP . It is used
 to convert addr and count to a start and stop
 address for a loop.

BRANCH PRIMIT IVE
 "branch"
 The run-time procedure to unconditionall y branch.
 An in-line offset is added to the interp retive
 pointer IP to branch ahead or back. BRAN CH is
 compiled by ELSE , AGAIN , and REPEAT .

BUFFER n --- addr MASS
 "buffer"
 Obtains the next block buffer, assigning it to block
 n. The block is not read from mass stora ge. If the
 previous contents of the buffer is marke d as UPDATED,
 it is written to the mass storage. If co rrect writing
 to mass storage is not possible, an erro r condition
 exists. The address left is the first b yte within
 the buffer for data storage.

C! n addr --- MEMORY
 "c-store"
 Stores the least significant 8-bits of n into the
 byte at the address.

C, n --- DICTIO NARY
 "c-comma"
 Stores 8 bits of n into the next availab le dictionary
 byte, advancing the dictionary pointer.

C,CON b --- <name>(compile time) DEFINI NG P
 <name> --- b (run time)
 "c comma constant"
 A defining word used in the form:

 b C,CON <name>

 to create a dictionary entry for <name>, leaving b
 in its parameter field. When <name> is e xecuted
 later in command mode b will be pushed o n the stack,
 when in compile mode the CFA of CLIT fol lowed by b
 will be compiled into the definition.

B-19

WORD STACK NOTATION/DEFINITION GROUP ATTR

C/L --- n INPUT/ OUTPUT
 "characters/line"
 Leaves the number of characters (default value = 80)
 per input line.

C@ addr --- byte MEMORY
 "c-fetch"
 Leaves the 8-bit contents of the byte at the address
 on the top of the stack in the low order byte.
 The high order byte is zero.

CASE: --- <name> DEFINI NG E
 "case colon"
 A defining word used in the form

 CASE: <name> ... ;

 Creates a dictionary entry for <name> in CURRENT ,
 and sets the compile mode. Words thus d efined
 are called "case statements".
 The compilation addresses of subsequent words
 from the input stream are stored into th e dictionary.
 (Intended for non-immediate words only.)

CFA pfa --- cfa MISC
 "c-f-a"
 Converts the parameter field address (pf a) of a
 definition to its code field address (cf a).

CLD/WRM --- addr MONITO R U
 "cold warm"
 User variable containing the COLD/WARM f lag.
 When equal to A55A, reset does a warm st art.
 When not equal to A55A reset does cold s tart.
 Checked by the kernel; set by the user o r
 development ROM.

CLIT --- b PRIMIT IVE
 "c-lit"
 Compiled within system object code to in dicate
 that the next byte is a single character literal
 (i.e., in range 0-255). Used only in sys tem code
 (not by application program, i.e. user).
 Application programs use LITERAL , which uses CLIT
 or LIT as appropriate.

B-20

WORD STACK NOTATION/DEFINITION GROUP ATTR

CMOVE addr1 addr2 n --- MEMORY
 "c-move"
 Moves n bytes from memory area beginning at address
 addr1 to memory area starting at addr2.
 The contents of addr1 is moved first pro ceeding
 toward high memory.
 If n is zero or negative, nothing is mov ed.

CODE DEFINI NG
 "code"
 A defining word used in the form:

 CODE <name> ... <assembly code> .. . END-CODE

 To set CONTEXT to the ASSEMBLER vocabula ry and
 to create a dictionary entry for <name>.
 When <name> is later executed the machin e code
 in this parameter field will execute.

COLD MONITO R
 "cold"
 The cold start procedure to adjust the d ictionary
 pointer to the minimum standard and rest art via
 ABORT . May be called from the terminal to remove
 application programs and restart.

COMPILE COMPIL ER
 "compile"
 When the word containing COMPILE execute s, the
 compilation address of the next non-imme diate word
 following COMPILE is copied (compiled) i nto the
 dictionary. This allows specific compila tion
 situations to be handled in addition to simply
 compiling an execution address (which th e
 interpreter already does).

CONSTANT n --- <name> (compile-time) DEFINI NG
 <name> --- n (run-time)
 "constant"
 A defining word used in the form:

 n CONSTANT <name>

 to create a dictionary entry for <name>, leaving n
 in its parameter field. When <name> is l ater
 executed, it will push the value of n to the stack.

B-21

WORD STACK NOTATION/DEFINITION GROUP ATTR

CONTEXT --- addr VOCABU LARY
 "context"
 Leaves the address of a user variable po inting to
 the vocabulary in which dictionary searc hes are to
 be made, during interpretation of the in put stream.

COUNT addr --- addr+1 n FORMAT
 "count"
 Leaves the address addr+1 and the charac ter count n
 of text beginning at addr. The first by te at addr
 must contain the character count n. The actual text
 starts with the second byte. The range o f n is 0-255.
 Typically COUNT is followed by TYPE .

CR INPUT/ OUTPUT
 "carriage-return"
 Transmits a carriage return (CR) and lin e feed (LF)
 to the active output device.

CREATE DICTIO NARY
 "create"
 A defining word used in the form:

 CREATE <name>

 Creates a dictionary entry for <name> wi thout
 allocating any parameter field memory. W hen <name>
 is subsequently executed, the address of the first
 byte of <name>'s parameter field is left on the stack.
 The code field contains the address of t he word's
 parameter field.
 The new word is created in the CURRENT v ocabulary.

CSP --- addr SECURI TY U
 "c-s-p"
 Leaves the address of a user variable te mporarily
 storing the check stack pointer (CSP) po sition,
 for compilation error checking.

CURRENT --- addr VOCABU LARY
 "current"
 Leaves the address of a user variable po inting to
 the vocabulary into which new word defin itions are
 to be entered.

B-22

WORD STACK NOTATION/DEFINITION GROUP ATTR

CYLINDER --- addr MASS
 "cylinder"
 User variable, four bytes long, used as an array.
 Each byte contains the track number of c orresponding
 disk.

D+ d1 d2 --- d3 ARITHM ETIC
 "d-plus"
 Adds double precision numbers d1 and d2 and leaves
 the double precision number sum d3.

D+- d1 n --- d2 ARITHM ETIC

 Applies the sign of n to the double prec ision number
 d1 and leaves it as double precision num ber d2.

D. d --- FORMAT
 "d-dot"
 Displays a signed double-precision numbe r from a
 32-bit two's complement value. The high -order 16
 bits are most accessible on the stack.
 Conversion is performed according to the current BASE .
 A blank follows.

D.R d n --- FORMAT
 "d-dot-r"
 Displays a signed double-precision numbe r d right
 aligned in a field n characters wide.

DABS d --- ud ARITHM ETIC
 "d-abs"
 Leaves the absolute value ud of a double number.

DECIMAL NUMERI C
 "decimal"
 Sets the numeric conversion BASE to deci mal (base 10)
 for input-output.

B-23

WORD STACK NOTATION/DEFINITION GROUP ATTR

DEFINITIONS VOCABU LARY
 "definitions"
 Used in the form:

 cccc DEFINITIONS

 Sets CURRENT to the CONTEXT vocabulary s o that
 subsequent definitions will be created in the
 vocabulary previously selected at CONT EXT .

DIGIT NUMERI C
 char n1 --- n2 tf (Valid conversi on)
 char n1 --- ff (Invalid convers ion)
 "digit"
 Converts the ASCII character (using base n1) to its
 binary equivalent n2, accompanied by a t rue flag (1).
 If the conversion is invalid, leaves onl y a false
 flag 0) .

DISK addr n f --- MASS
 "disk"
 Single point entry to kernel disk handle rs.
 Perform disk operation, read if f=1, wri te if f=0,
 write disk block n and memory location a ddr.

DISKNO --- addr MASS U

 User variable containing the currently s elected disk
 drive number 0 through 3.

DLITERAL d --- d (executing) COMPIL ER
 d --- (compiling) "d-literal"

 If compiling, compiles a stack double nu mber into a
 literal. Later execution of the definit ion
 containing the literal will push it to t he stack.
 If executing, the number will remain on the stack.

DNEGATE d1 --- -d1 ARITHM ETIC
 "d-negate"
 Leaves the two's complement of a double precision number.

B-24

WORD STACK NOTATION/DEFINITION GROUP ATTR

DO n1 n2 --- (run-time) CONTRO L
 addr n --- (compile-time)

 Occurs in a colon-definition in form:

 DO ... LOOP
 DO ... +LOOP

 At run-time, DO begins a sequence with repetitive
 execution controlled by a loop limit n1 and an index
 with initial value n2. DO removes these from the
 stack. Upon reaching LOOP the index is i ncremented
 by one. At the +LOOP the index is modifi ed by a
 positive or negative value. Until the ne w index
 equals or exceeds the limit, execution l oops back
 to just after DO ; otherwise the loop pa rameters are
 discarded and execution continues ahead.
 Both n1 and n2 are determined at run-tim e and may be
 the result of other operations.

 Loops may be nested. Within a loop I wi ll copy the
 current value of the index to the stack.
 See I , LOOP , +LOOP , LEAVE .

 At compile-time within the colon-definit ion, DO
 compiles (DO) and leaves the following a ddr and n
 for later error checking.

DOES> DEFINI NG
 "does"
 Defines the run-time action within a hig h-level
 defining word.
 Used in the form:

 : <name> ... (BUILDS ...
 DOES> ... ;
 and then <name> <namex>.

 Marks the termination of the defining pa rt of the
 defining word <name> and begins the defi nition of
 the run-time action for words that will later be
 defined by <name>.

B-25

WORD STACK NOTATION/DEFINITION GROUP ATTR

DOES> DOES> alters the code field and first pa rameter of
(Cont.) the new word to execute the sequence of compiled
 word addresses following DOES> .
 Used in combination with <BUILDS .
 The execution of the DOES> part begins w ith the
 address of the first parameter of the ne w word
 <namex> on the stack. Upon execution of <name>
 the sequence of words between DOES> and ; will
 be executed, with the address of <namex> 's
 parameter field on the stack.
 This allows interpretation using this ar ea or
 its contents.

 Typical uses include the FORTH assembler ,
 multi-dimensional arrays, and compiler g eneration.

DP ---— addr PARAME TER U
 "d-p"
 Leaves the address of user variable, the dictionary
 pointer, which points to address the nex t free
 memory address above the dictionary.
 The value may be read by HERE and altere d by ALLOT .

DP/ --- addr PARAME TER
 "d-p-slash"
 Accesses user variable. Addr is dictiona ry pointer
 for heads portion of definitions.
 When normal code DP/ equals DP.
 When headerless DP/ equals DP plus two.

DPL ---— addr FORMAT U
 "d-p-l"
 Leaves the address of user variable cont aining the
 number of digits to the right of the dec imal on
 double integer input.
 It may also be used hold output column l ocation of
 a decimal point in user generated format ting.
 The default value on single number input is -1.

DREAD addr n --- m MASS
 "d read"
 Reads from disk sector 4n +1 to memory l ocation
 addr in 1K-byte records and leaves the d isk error
 byte on the stack (see E.4).

B-26

WORD STACK NOTATION/DEFINITION GROUP ATTR

DROP n --- STACK
 "drop"
 Drops the number on top of the stack fro m the stack.

DUMP addr n --- INPUT/ OUTPUT
 "dump"
 Displays the contents of n memory locati ons
 beginning at addr. Both addresses and co ntents are
 shown in the current numeric base.
 DUMP outputs 8 bytes on a line.

DUP n --- n n STACK
 "dup"
 Duplicates the value on the stack.

DWRITE addr n --- MASS
 "d-write"
 Writes to disk sector 4n + 1 from memory location
 addr in 1K-byte records and leaves the d isk error
 byte on the stack (see E.4).

EEC! b addr n --- MEMORY
 "e-e-c store"
 Stores data b in addr for n clock cycles .
 Used for EEROM or EPROM programming.

ELSE CONTRO L I,C
 addr1 n1 --- addr2 n2 (compiling)
 "else"
 Occurs within a colon-definition in the form:

 IF ... ELSE ... THEN

 At run-time, ELSE executes after the tru e part
 following IF . ELSE forces execution to skip over
 the following false part and resumes exe cution after
 the THEN . It has no stack effect.

 At compile-time, ELSE emplaces BRANCH r eserving
 a branch offset, leaves the address addr 2 and n2 for
 error testing. ELSE also resolves the pe nding
 forward branch from IF by calculating th e offset
 from addr1 to HERE and storing at addr1.
 See IF and THEN .

B-27

WORD STACK NOTATION/DEFINITION GROUP ATTR

EMIT char --- INPUT/ OUTPUT
 "emit"
 Transmits an ASCII character to the sele cted output
 device. See KEY .

EMPTY-BUFFERS MASS
 "empty-buffers"
 Marks all block-buffers as empty, not ne cessarily
 affecting the contents. Updated blocks a re not
 written to the mass storage. This is als o the
 required initialization procedure before first
 use of the mass storage.

ENCLOSE PRIMIT IVE
 addr char --- addr n1 n2 n3
 "enclose"
 The text scanning primitive used by WORD .
 From the text address addr and an ASCII delimiting
 character, is determined the byte offset to the
 first non-delimiter character n1, the of fset to
 the first delimiter after the text n2, a nd the
 offset to the first character not includ ed n3.
 This procedure will not process past an ASCII
 'null', treating it as an unconditional delimiter.

END CONTRO L I,C
 "end"
 This is an 'alias' or duplicate definiti on for UNTIL

ENDIF addr n --- (compile) CONTRO L
 "end-if"
 An alias for THEN . See THEN .

ERASE addr n --- MEMORY
 "erase"
 Clears a region of memory to zero from a ddr over n
 addresses.

B-28

WORD STACK NOTATION/DEFINITION GROUP ATTR

ERROR line --- in blk SECURI TY
 "error"
 Executes error notification and restart of system.
 WARNING is first examined. If WARNING = 1, the
 text of line n, relative to screen 4 of drive 0 is
 printed. This line number may be positi ve or
 negative, and beyond just screen 4.
 If WARNING = 0, n is just printed as a m essage number
 (non-disk installation).
 If WARNING = -1, the definition (ABORT) is executed,
 which executes the system ABORT .
 The user may cautiously modify this exec ution by
 altering (ABORT) .
 RSC-FORTH saves the contents of IN and B LK to assist
 in determining the location of the error .
 Final action is execution of QUIT .

EXECUTE addr — COMPIL ER
 "execute"
 Executes the definition whose code field address is
 on the stack. The code field address is also called
 the compilation address.

EXPECT addr count --- INPUT/ OUTPUT
 "expect"
 Transfers characters from the terminal b eginning at
 addr, upwards until a "return" or the co unt of n
 characters has been received. Takes no a ction for
 n = zero or less.
 One or more nulls are added at the end o f the text.

FENCE --- addr SECURI TY U
 "fence"
 Leaves the address of a user variable co ntaining an
 address below which FORGETting is trappe d.
 To forget below this point the user must alter the
 contents of FENCE .

FILL addr n b --- MEMORY
 "fill"
 Fills n bytes, beginning at addr, with t he byte
 pattern b.

FINIS MONITO R
 "finis"
 Marks the end of the input data stream i nto the compiler.

B-29

WORD STACK NOTATION/DEFINITION GROUP ATTR

FIRST --- n MASS
 "first"
 Leaves the first (lowest) address of the data
 (or mass storage) buffer.

FLUSH MASS
 "flush"
 Writes all blocks to mass storage that h ave been
 flagged as UPDATEd .
 An error condition results if writing to mass
 storage is not completed.

FORGET DICTIO NARY
 "forget"
 Executes in the form:

 FORGET <name>

 Delete from the dictionary <name> (which is in the
 CURRENT vocabulary) and all words added to the
 dictionary after <name>, regardless of t heir
 vocabulary.
 An error message will occur if the CURRE NT and
 CONTEXT vocabularies are not currently t he same.
 Failure to find <name> in CURRENT or FOR TH is
 an error condition.

FORMAT n1 n2 --- MASS
 "format"
 Format n1 tracks on disk number n2.

FORTH VOCABU LARY I
 "forth"
 The name of the primary vocabulary.
 Execution makes FORTH the CONTEXT vocabu lary.

 New definitions become a part of FORTH u ntil a
 differing CURRENT vocabulary is establis hed.

 User vocabularies conclude by "chaining" to FORTH,
 so it should be considered that FORTH is 'contained'
 within each user's vocabulary.

FMTRK n1 n2 --- MASS
 "format track"
 Format track n1 on side n2 of the select ed disk.

B-30

WORD STACK NOTATION/DEFINITION GROUP ATTR

H/C addr --- DICTIO NARY
 "h-slash-C"
 Separates heads and codes dictionary.
 Heads are set to generate at addr. DP/ i s
 assigned this addr.
 Codes are set to generate at value of DP
 prior to execution. HEADERLESS is set to 1.
 Results are displayed for verification.

HEADERLESS --- addr DICTIO NARY
 "headerless"
 User variable containing boolean flag in dicating
 state of target compilation.
 When equal to 0, normal code is compiled .
 When equal to 1 headerless code is compi led.

HERE --- addr DICTIO NARY
 "here"
 Leaves the address of the next available
 codes dictionary location.

HERE/ --- addr DICTIO NARY
 "here-slash"
 Leaves the address of the next available
 dictionary in the heads dictionary.

HEX NUMERI C
 "hex"
 Sets the numeric conversion BASE to sixt een
 (hexadecimal).

HLD --- addr FORMAT
 "hold"
 Leaves the address of user variable whic h holds
 the address of the latest character of t ext
 during numeric output conversion.

HOLD char FORMAT
 "hold"
 Used between <# and #> to insert an ASCI I
 character into a pictured numeric output string.

B-31

WORD STACK NOTATION/DEFINITION GROUP ATTR

HWORD --- DICTIO NARY
 "h-word"
 Latest defined word's code section is li fted from
 codes dictionary, relinked and placed in the heads
 dictionary.
 Dictionary pointers are re-adjusted acco rdingly.

I --- n CONTRO L
 "i"
 Used within a DO-LOOP to copy the loop i ndex from
 the return stack to the stack.

ID. nfa --- INPUT/ OUTPUT
 "i-d-dot"
 Prints a definition's name from its name field
 address. See NFA.

IER --- addr MISC P
 "interrupt-enable-register"
 System address constant for addr of Inte rrupt Enable
 Register.

IF flag --- (run-time) CONTRO L
 --- addr n (compile)
 "if"
 Used in a colon-definition in form:

 IF ... THEN
 IF ... ELSE ... THEN

 At run-time, IF selects execution based on a
 Boolean flag. If flag is true, the word s following
 IF are executed and the words following ELSE are
 skipped. The ELSE part is optional.

 If flag is false, the words between IF a nd ELSE ,
 or between IF and THEN (when no ELSE is used),
 are skipped.
 IF-ELSE-THEN conditionals may be nested.

 At compile-time, IF compiles 0BRANCH an d
 reserves space for an offset at addr . A ddr and n
 are used later for resolution of the off set and
 error testing.

B-32

WORD STACK NOTATION/DEFINITION GROUP ATTR

IFR --- addr MISC
 "interrupt-flag-register"
 System address constant for addr of Inte rrupt Flag
 Register.

IMMEDIATE COMPIL ER
 "immediate"
 Marks the most recently made dictionary entry as a
 word which will be executed when encount ered rather
 than being compiled.

IN --- addr INPUT/ OUTPUT U
 "in"
 Leaves the address of user variable cont aining the
 byte offset within the current input tex t buffer
 (terminal or disk) from which the next t ext will
 be accepted. WORD uses and moves the val ue of IN .

INDEX n1 n2 --- MASS
 "index"
 Lists the first lines of screens n1 to n 2.
 Terminates indexing if a key is typed.

INIT --- MASS
 "init"
 Sets all locations in CYLINDER to $FF, i n effect
 forcing the next access to that drive to recalibrate
 from track 0.

INTFLG --- addr MISC
 "interrupt-flag"
 System address constant for addr of High Level
 Interrupt Flag.

INTVEC --- addr MISC
 "interrupt-vector"
 System address constant for addr of High Level
 Interrupt Vector.

B-33

WORD STACK NOTATION/DEFINITION GROUP ATTR

INTERPRET COMPIL ER
 "interpret"
 The outer text interpreter which sequent ially
 executes or compiles text from the input stream
 (terminal or mass storage) depending on STATE .
 If the word name cannot be found after a search
 of CONTEXT and then CURRENT it is conver ted to
 a number according to the current BASE .
 That also failing, an error message echo ing the
 <name> with a "?" will be given.

 Text input will be taken according to th e convention
 for WORD . If a decimal point is found a s part of a
 number, a double number value will be le ft.
 The decimal point has no other purpose t han to force
 this action. See NUMBER .

IRQVEC --- addr MISC
 "I-R-Q vector"
 System address constant for addr of Low Level IRQ vector.

KEY --- char INPUT/ OUTPUT
 "key"
 Leaves the ASCII value of the next avail able character
 from the active input device.

KHZ --- addr PARAME TER
 "kilo-hertz"
 A user variable that specifies the speed of the
 processor clock. Currently unused and un initialized.

LATEST ---— addr DICTIO NARY
 "latest"
 Leaves the name field address of the top -most word
 in the CURRENT vocabulary.

LEAVE CONTRO L
 "leave"
 Forces termination of a DO-LOOP at the n ext
 opportunity by setting the loop limit eq ual to
 the current value of the index.
 The index itself remains unchanged, and execution
 proceeds normally until LOOP or +LOOP is encountered.

B-34

WORD STACK NOTATION/DEFINITION GROUP ATTR

LFA pfa --- If a DICTIO NARY
 "l-f-a"
 Converts the parameter field address (pf a) of a
 dictionary definition to its link field address
 (lfa).

LIMIT --- n MASS

 Leaves the highest address plus one avai lable in
 the data (or mass storage) buffer.
 Usually this is the highest system memor y.

LIST n --- MASS
 "list"
 Lists screen n to the current output dev ice.

LIT --- n PRIMIT IVE
 "lit"
 Within a colon-definition, LIT is automa tically
 compiled before each 16-bit literal numb er
 encountered in input text. Later executi on of
 LIT causes the contents of the next dict ionary
 address to be pushed to the stack.

LITERAL n --- (compiling) COMPIL ER
 "literal"
 If compiling, then compile the stack val ue n as a
 16-bit literal, which when later execute d, will
 leave n on the stack. This definition is immediate
 so that it will execute during a colon d efinition.
 The intended use is:

 : xxx [calculate] LITERAL ;

 Compilation is suspended for the compile time
 calculation of a value.
 Compilation is then resumed and LITERAL compiles
 this value into the definition.

B-35

WORD STACK NOTATION/DEFINITION GROUP ATTR

LOAD n --- MASS
 "load"
 Begins interpretation of screen n by mak ing it the
 input stream; preserves the locators of the present
 input stream (from IN and BLK).

 If interpretation is not terminated expl icitly it
 will be terminated when the input stream is exhausted.
 Control then returns to the input stream containing
 LOAD , determined by the input stream lo cators IN and BLK .

LOOP addr n --- (compiling) CONTRO L I,C
 "loop"
 Occurs in a colon-definition in form:

 DO ... LOOP

 At run-time, LOOP selectively controls b ranching
 back to the corresponding DO based on th e loop
 index and limit. The loop index is incre mented
 by one and compared to the limit.
 The branch back to DO occurs until the i ndex
 equals or exceeds the limit; at that tim e, the
 parameters are discarded and execution c ontinues
 ahead.

 At compile-time, LOOP compiles (LOOP) and uses
 addr to calculate an offset to DO . n i s used
 for error testing.

M* n1 n2 --- d ARITHM ETIC
 "m-times"
 A mixed magnitude math operation which l eaves the
 double number signed product of two sign ed number.

M/ d n1 --- n2 n3 ARITHM ETIC
 "m-divides"
 A mixed magnitude math operator which le aves the
 signed remainder n2 and signed quotient n3, from
 a double number dividend d and divisor n 1.
 The remainder takes its sign from the di vidend.

M/MOD ud1 u2 --- u3 ud4 ARITHM ETIC
 "m-divide-mod"
 An unsigned mixed magnitude math operati on which
 leaves a double quotient ud4 and remaind er u3,
 from a double dividend ud1 and single di visor u2.

B-36

WORD STACK NOTATION/DEFINITION GROUP ATTR

MAX nl n2 --- max ARITHM ETIC
 "max"
 Leaves the greater of two numbers.

MCR --- addr MISC
 "mode control register"
 System address constant for addr of Mode Control
 Register.

MEMTOP addr --- MASS
 "memory top"
 Initializes ULIMIT to addr and UFIRST to addr-$C0C.
 Clears disk buffers.

MESSAGE n --- SECURI TY
 "message"
 Displays on the selected active device t he text of
 line n relative to screen 4 of drive 0. n may be
 positive or negative. MESSAGE may be us ed to
 print incidental text such as report hea ders.
 If WARNING is zero, the message will sim ply be
 displayed as a number (no mass storage).

MIN nl n2 --- n3 ARITHM ETIC
 "min"
 Leaves the smaller number n3 of two numb ers,
 n1 and n2.

MOD n1 n2 --- n3 ARITHM ETIC
 "mod
 Leaves the remainder n3 of n1 divided by n2, with
 the same sign as n1.

MODE --- addr PARAME TER U
 "mode" A variable used by the assembler.

MON MONITO R
 "mon"
 Exits to the micro Monitor, leaving a re -entry to
 FORTH.

B-37

WORD STACK NOTATION/DEFINITION GROUP ATTR

NEGATE n --- -n ARITHM ETIC
 "negate"
 Leaves the two's complement of a number, i.e.
 the difference of 0 less n.

NFA pfa --- nfa DICTIO NARY
 "n-f-a"
 Converts the parameter field address (pf a) of a
 definition to its name field address (nf a).

NMIVEC --- addr MISC P
 "N-M-I vector"
 System address constant for addr of Low Level NMI
 vector.

NOT flag --- COMPAR ISON
 "not"
 Leaves a true flag (1) if the number is equal to
 zero, otherwise leaves a false flag. Sam e as 0 = .

NUMBER addr --- d FORMAT
 "number"
 Converts a character string left at addr with a
 preceeding count, to a signed double pre cision
 number, using the current number BASE .
 If a decimal point is encountered in the text,
 its position will be given in DPL , but no other
 effect occurs.
 If numeric conversion is not possible,
 an error message will be given.

OFFSET --- addr MASS U
 "offset"
 Leaves the address of user variable whic h contains
 a block offset to mass storage. The cont ent of
 OFFSET is added to the stack number by B LOCK .
 Messages by MESSAGE are independent of O FFSET .
 See BLOCK and MESSAGE .

OR nl n2 --- n3 ARITHM ETIC
 "or"
 Leaves the bit-wise logical or of two 16 bit values.

B-38

WORD STACK NOTATION/DEFINITION GROUP ATTR

OVER n1 n2 --- n1 n2 n1 STACK
 "over"
 Copies the second stack value, placing i t as the new
 top of stack.

PA --- addr MISC P
 "port-a"
 System address constant for addr of Port A.

PAD --- addr DICTIO NARY

 Leaves the address of a scratch area use d to hold
 character strings for intermediate proce ssing.
 The maximum capacity is 64 characters.

PB --- addr MISC P
 "port-b"
 System address constant for addr of Port B.

PC --- addr MISC P
 "port-c"
 System address constant for addr of Port C.

PD --- addr MISC P
 "port-d"
 System address constant for addr of Port D.

PE --- addr MISC P
 "port-e"
 System address constant for addr of Port E.

PF --- addr MISC P
 "port-f"
 System address constant for addr of Port F.

PFAPTR nfa --- pfaptr DICTIO NARY
 "p-f-a-pointer"
 Converts the name field address (nfa) of a pointer
 dictionary definition to its parameter f ield address
 (pfaptr).

B-39

WORD STACK NOTATION/DEFINITION GROUP ATTR

PG --- addr MISC P
 "port-g"
 System address constant for addr of Port Port G.

PICK n --- nth STACK
 "pick"
 Returns the contents of the nth stack va lue, not
 counting n itself. An error conditions r esults for
 n less than one. 2 PICK is equivalent t o OVER .

PREV --- addr MASS U
 "prev"
 Leaves the address of a user variable co ntaining the
 address of the disk buffer most recently referenced.
 The UPDATE command marks this buffer to be later
 written to mass storage.

QUERY INPUT/ OUTPUT
 "query"
 Accepts input of up to 80 characters of text,
 (or until a "return") from the keyboard into the
 terminal input buffer (TIB) .
 WORD may be used to accept text from thi s buffer
 as the input stream, by setting IN and B LK to zero.

QUIT MISC
 "quit"
 Clears the return stack, stops compilati on, and
 returns control to the keyboard.
 No message is given.

R --- n STACK
 "r"
 Copies the top of the return stack to th e
 computation stack.

R/W addr blk flag --- MASS
 "r-slash-w"
 The mass storage read-write linkage. add r specifies
 the source or destination block buffer, blk is the
 sequential number of the referenced bloc k; and flag
 specified read or write (flag = 0 is wri te and flag
 = 1 is read). R/W determines the locati on on

B-40

WORD STACK NOTATION/DEFINITION GROUP ATTR

R/W storage, performs the read-write and per forms any
(Cont.) error checking. R/W executes the cfa fo und in
 UR/W . On cold start this is the address of (ABORT) .

R> --- n STACK
 "r-from"
 Removes the top value from the return st ack and leaves
 it on the computation stack. See >R and R .

R0 --- addr PRIMIT IVE U
 "r-zero"
 Leaves the address of user variable cont aining the
 initial value of the return stack pointe r. See RP! .

REPEAT addr n --- (compiling) CONTR OL
 "repeat"
 Used within a colon-definition in the fo rm:

 BEGIN ... WHILE ... REPEAT

 At run-time, REPEAT forces an unconditio nal branch
 back to just after the corresponding BEG IN .

 At compile-time, REPEAT compiles BRANCH and the
 offset from HERE to addr. n is used for error testing.

ROT n1 n2 n3 --- n2 n3 n1 STACK
 "rot"
 Rotates the top three values on the stac k,
 bringing the third to the top.

RP! --- PRIMIT IVE
 "r-p-store"
 Initializes the return stack pointer fro m user
 variable R0 .

RP@ --- addr STACK
 "r-p-fetch"
 Leaves the address of a variable contain ing the return
 stack pointer.

B-41

WORD STACK NOTATION/DEFINITION GROUP ATTR

S->D n --- d ARITHM ETIC
 "s-to-d"
 Extends the sign of single number n to f orm double
 number d.

S0 --- addr PRIMIT IVE U
 "s-zero"
 Leaves the address user variable that co ntains the
 initial value for the parameter stack po inter.
 See SP!

SCCR --- addr MISC P
 "serial channel control register"
 System address constant for addr of Seri al Channel
 Control Register.

SCDR --- addr MISC P
 "serial channel data register"
 System address constant for addr of Seri al Channel
 Data Register.

SCSR --- addr MISC P
 "serial channel status register"
 System address constant for addr of Seri al Channel
 Status Register.

SCR --- addr MASS
 "s-c-r"
 Leaves the address of user variable cont aining the
 screen number most recently referenced b y LIST .

SEEK n --- MASS
 "seek"
 Causes drive selected to seek track n.

SELECT n --- MASS
 "select"
 Selects and activates disk drive number n.

B-42

WORD STACK NOTATION/DEFINITION GROUP ATTR

SIGN n d --- d FORMAT
 "sign"
 Inserts the ASCII "-" (minus sign) into the pictured
 numeric output string if n is negative,
 n is discarded, but double number d is m aintained.
 Must be used between <# and #> .

SMUDGE --- DICTIO NARY
 "smudge"
 Used during word definition to toggle th e "smudge bit"
 in a definitions name field.
 This prevents an uncompleted definition from being
 found during dictionary searches, until compiling is
 completed without error.

SOURCE --- MONITO R
 "source"
 A procedure which allows batch compilati on from the
 serial channel or an alternate input.

 Compilation continues until FINIS is enc ountered.
 FINIS alters serial input back to serial channel.

SP! --- STACK
 "s-p-store"
 Initializes the stack pointer from S0 .

SP@ --- addr STACK
 "s-p-fetch"
 Returns the address of the top of the st ack as it was
 before SP@ was executed, (e.g., 1 2 SP@ @ . . .
 would type 2 2 1)

SPACE INPUT/ OUTPUT

 Transmits an ASCII blank to the active o utput device.

SPACES n —- INPUT/ OUTPUT
 "spaces"
 Transmit n ASCII blanks to the active ou tput device.

B-43

WORD STACK NOTATION/DEFINITION GROUP ATTR

STATE --- addr COMPIL ER U
 "state"
 Leaves the address of user variable cont aining the
 compilation state.
 A non-zero value indicates compilation.

SWAP n1 n2 --- n2 n1 STACK
 "swap"
 Exchanges the top two values on the stac k.

TASK --- DICTIO NARY
 "task"
 A no-operation word which can mark the b oundary
 between applications. By forgetting TAS K and
 recompiling, an application can be disca rded
 in its entirety. Its definition is : TA SK ; .

THEN CONTRO L
 "then"
 Used within a colon-definition, in the f orm:

 IF . . . ELSE . . . THEN or
 IF . . . THEN

 THEN is the point where execution resume s after ELSE
 or IF (when no ELSE is present).

TIB --- addr INPUT/ OUTPUT U
 "t-i-b"
 Leaves the address of user variable cont aining the
 starting address of the terminal input b uffer.

TOGGLE addr b --- MEMORY
 "toggle"
 Complements the contents of addr by the 8-bit pattern
 byte.

TRAVERSE addr n --- addr DICTIO NARY
 "traverse"
 Adjust the addr in a negative or positiv e direction,
 depending on the sign of n, until the co ntents of addr
 is greater than $7F. n must be either 1 or -1.

B-44

WORD STACK NOTATION/DEFINITION GROUP ATTR

TYPE addr n --- INPUT/ OUTPUT
 "type"
 Transmits n characters beginning at addr to the active
 output device.
 No action takes place for n less than on e.

U* un1 un2 --- ud ARITHM ETIC
 "u-times"
 Performs an unsigned multiplication of u n1 by un2,
 leaving the unsigned double number produ ct of two
 unsigned numbers.

U/ ud u1 --- u2 u3 ARITHM ETIC
 "u-divide"
 Performs the unsigned division of double number ud by
 u1, leaving the unsigned remainder u2 an d unsigned
 quotient n3 from the unsigned double div idend ud and
 unsigned divisor u1.

U< un1 un2 --- flag COMPAR ATIVE
 "u-less-than"
 Leaves the flag representing the magnitu de comparison
 of un1 < un2 where un1 and un2 are treat ed as 16-bit
 unsigned integers.

UABORT --- addr PARAME TER U
 "u-abort"
 Leaves the address of the user variable containing the
 code field address of the ABORT word.

UC/L --- addr PARAME TER U
 "u-characters-per-line"
 Leaves the address of the user variable containing the
 number of characters per line.

UFIRST --- addr PARAME TER U
 "u-first"
 Leaves the address of the user variable containing the
 first address of the data (or mass stora ge) buffer.

B-45

WORD STACK NOTATION/DEFINITION GROUP ATTR

ULIMIT --- addr PARAME TER U
 "u-limit"
 Leaves the address of the user variable containing the
 last address plus one of the data (or ma ss storage) buffer.

UNTIL flag --- (run-time) CONTRO L I,C
 addr n --- (compile-time)

 "until"
 Occurs within a colon-definition in the form:

 BEGIN ... UNTIL

 At run-time, if flag is true, the loop i s terminated.
 If flag is false, execution returns to t he first
 BEGIN - UNTIL structures may be nested.

 At compile-time, UNTIL compiles 0BRANCH and an offset
 from HERE to addr. n is used for error t ests.

UPAD --- addr PARAME TER U
 "u-pad"
 Leaves address of the user variable cont aining the
 address of the temporary storage area PA D .

UPDATE MASS
 "update"
 Marks the most recently referenced block (pointed to
 by PREV) as altered. The block will su bsequently be
 transferred automatically to mass storag e, should its
 buffer be required for storage of a diff erent block.

UR/W --- addr PARAME TER
 "u-read-write"
 Leaves the address of the user variable containing the
 code field address of the mass storage I /O word.
 Initialized to (ABORT) on a cold start.

USE --- addr MASS U
 "use"
 Leaves the address of user variable cont aining the
 address of the block buffer to use next, as the least
 recently written.

B-46

WORD STACK NOTATION/DEFINITION GROUP ATTR

USER n --- DEFINI NG
 "user"
 A defining word used in the form:

 n USER <name>

 which creates a user variable <name>. Th e parameter
 field of <name> contains n as a fixed of fset relative
 to the user pointer register UP for this user variable.
 When <name> is later executed, it places the sum of its
 offset and the user area base address on the stack as
 the storage address of that particular v ariable.
 Offsets of $60 to $7F are available.
 See Appendix G.

VARIABLE n --- <name> (compute-time) DEFIN ING
 <name> --- (run-time)
 "variable"
 A defining word executed in the form:

 n VARIABLE <name>

 to create a dictionary entry for <name> and allot two
 bytes for storage in the parameter field .
 When <name> is later executed, it will p lace the
 storage address on the stack.

VOC-LINK ---— addr VOCABU LARY U
 "voc-link"
 Leaves the address of user variable cont aining the
 address of a field in the definition of the most
 recently created vocabulary.
 All vocabulary names are linked by these fields
 to allow control for FORGETting through multiple
 vocabularies.

VOCABULARY VOCABU LARY
 "vocabulary"
 A defining word used in the form:

 VOCABULARY <name>

 to create (in the CURRENT vocabulary) a dictionary
 entry for <name>, which specifies a new ordered
 list of word definitions.
 Subsequent execution of <name> will make it the
 CONTEXT vocabulary. When <name> becomes the CURRENT
 vocabulary (see DEFINITIONS), new defin itions will
 be created in that list.

B-47

WORD STACK NOTATION/DEFINITION GROUP ATTR

VOCABULARY New vocabularies 'chain' to FORTH. This is, when
(Cont.) all of dictionary search through a vocab ulary is
 exhausted, FORTH will be searched.

VLIST VOCABU LARY
 "v-list"
 Lists the names of the definitions in th e CONTEXT
 vocabulary. Depression of any key will t erminate
 the listing.

WARNING --- addr SECURI TY U
 "warning"
 Leaves the address of user variable cont aining a value
 controlling messages.
 If value = 1 mass storage is present and screen 4 of
 drive 0 is the base location for message s.
 If value = 0, no disk is present and mes sages will
 be presented by number.
 If value = -1, execute (ABORT) for a use r specified
 procedure. See MESSAGE and ERROR .

WHILE flag --- (run-time) CONTRO L I,C
 addr1 n1 -> addr1 n1 addr2 n2
 "while"
 Occurs in a colon-definition in the form :

 BEGIN ... WHILE (tp) ... REPEAT

 At run-time, WHILE selects conditional execution
 based on Boolean flag. If flag is true (non-zero),
 WHILE continues execution of the true pa rt through
 to REPEAT , which then branches back to BEGIN .
 If flag is false (zero), execution skips to just
 after REPEAT , exiting the structure.

 At compile-time, WHILE emplaces (0BRANCH) and
 leaves addr2 of the reserved offset.
 The stack values will be resolved by REP EAT .

B-48

WORD STACK NOTATION/DEFINITION GROUP ATTR

WIDTH --- addr SECURI TY U
 "width"
 Leaves the address of user variable cont aining the
 maximum number of letters saved in the c ompilation
 of a definitions name. It must be 1 thr ough 31,
 with a default value of 31.
 The name character count and its natural characters
 are saved, up to the value in WIDTH . The value
 may be changed at any time within the ab ove limits.

WORD char --- COMPIL ER
 "word"
 Receives characters from the input strea m until the
 non-zero delimiting character in the sta ck is
 encountered or the input stream is exhau sted,
 ignoring leading delimiters.
 The characters are stored as a packed st ring with
 the character count in the first charact er position.
 The actual delimiter encountered (char o r null)
 is stored at the end of the text but not included
 in the count.
 If the input stream was exhausted as WOR D is called,
 then a zero length will result.

XOFF --- MONITO R
 "x-off"
 Sends XOFF ($13) character to system ter minal.

XON --- MONITO R
 "x-on"
 Sends XON ($11) character to system term inal.

XOR nl n2 --- n3 ARITHM ETIC
 "x-or"
 Leaves the bit-wise logical exclusive or of two values.

[COMPIL ER I
 "left-bracket"
 Ends the compilation mode. The text fro m the input
 stream is subsequently executed. See] .

B-49

WORD STACK NOTATION/DEFINITION GROUP ATTR

[COMPILE] COMPIL ER I
 "bracket compile"
 Used in a colon-definition in form:

 [COMPILE] <name>

 Forces compilation of the following word . This allows
 compilation of an IMMEDIATE word when it would
 otherwise be executed.

] COMPIL ER
 "right bracket"
 Sets the compilation mode. The text from the input
 stream is subsequently compiled. See [.

" " (NULL) --- INPUT/ OUTPUT
 "null"
 Null is executed at the end of each line of input or
 screen of input. It is not called direct ly by the user.

B-50

APPENDIX C

RSC-FORTH ASSEMBLER FUNCTIONAL SUMMARY

This appendix contains a summary of the RSC-FORTH A ssembler word definitions
grouped by area of primary function. Consult appen dix D for the detail
definition of each word.

Stack Notation

The stack operation is denoted in parenthesis. The symbols on the left indicate
the order in which input parameters must be placed on the stack prior to FORTH
word execution. Three dashes (---) indicate the FOR TH word execution point. Any
parameters left on the stack after execution are li sted on the right. The top of
the stack is to the right.

Symbol Definition

 A/T Assembly-time

 R/T Run-time

 H/B High-byte

 L/B Low-byte

 addr, addr1,... Address

C.I OP-CODES

 ADC, DEC, LSR, SEC,
 AND, DEX, NOP, SED,
 ASL, DEY, ORA, SEI,
 BIT, EOR, PHA, SMB,
 BRK, INC, PHP, STA,
 CLC, INX, PLA, STX,
 CLD, INY, PLP, STY,
 CLI, JMP, ROL, TAX,
 CLV, JSR, ROR, TAY,
 CMP, LDA, RMB, TSX,
 CPX, LDX, RTI, TXA,
 CPY, LDY, RTS, TXS,
 SBC, TYA,

C-1

C.2 ADDRESS MODES

 .A --- Accumulator address mod e.
 # --- Immediate address mode.
 ,X --- Indexed X address mode.
 ,Y --- Indexed Y address mode.
 X) --- Indexed Indirect X addr ess mode.
)Y --- Indirect Indexed Y addr ess mode.
) --- Indirect Absolute addre ss mode.

C.3 CONDITIONAL SPECIFIERS

 0< A/T: --- cc Branch on negative (N=1).
 0= A/T: --- cc Branch on zero (Z= 1).
 VS A/T: --- cc Branch on overflow (V=1).
 CS A/T: --- cc Branch on carry (C =1).
 NOT A/T: ccl --- cc2 Reverse the condit ion code.
 BITCLR A/T:n addr --- cc Branch on bit n of zero page address
 addr clear.
 BITSET A/T:n addr --- cc Branch on bit n of zero page address
 addr set.

C.4 CONTROL

 BEGIN, A/T: --- addr 1 At A/T, leav es the dictionary address and
 the value 1 pointer for later testing of
 conditiona l pairing.

 R/T: At R/T, mark s the beginning of a
 repeatedly executed assembly sequence.

 UNTIL, A/T: addr 1 cc -- At A/T, asse mbles a conditional branch
 instructio n to addrB (BEGIN, point)
 based on c ondition code cc.

 R/T: --- At R/T, cond itionally branches to the
 BEGIN, poi nt (if cc is false) or
 continues ahead (if cc is true).

 AGAIN, A/T: addr 1 --- At A/T, asse mbles a JMP instruction to
 addrB (BE GIN, point).

 R/T: --- At R/T, jump s to the BEGIN, point.

C-2

C4 CONTROL (Continued)

 REPEAT, A/T: addr 1 addrW 3 --- At A/T , assembles a JMP
 instr uction to the BEGIN, point.

 R/T: --- At R/T , jumps to the BEGIN, point.

 WHILE, A/T: addr 1 --- At A/T , assembles a conditional
 bran ch instruction to the
 addr 1 addrW 3 inst ruction following REPEAT,
 base d on the condition code cc.

 R/T: --- At R/T , conditional branches to
 the point following REPEAT,
 if c c is false, or continues
 ahea d if cc is true.

 IF, A/T: --- addr 2 At A/T , creates an unresolved
 forw ard conditional branch
 base d on cc and leaves addr for
 reso lution by ELSE, or THEN,.

 R/T: cc --- addr 2 At R/T , conditionally branches
 to t he ELSE, point (or THEN,
 poin t if ELSE is not present)
 if c c is false, or continues
 ahea d if cc is true.

 ELSE, A/T: addrl 2 --- addr2 2 At A/T , assembles a forward JMP
 inst ruction to THEN, and
 reso lves the forward
 cond itional branch from IF, .

 R/T: --- At R/T , marks the start of an
 asse mbly sequence conditionally
 bran ched to from IF, if cc is
 fals e.

 THEN, A/T: addr 2 --- At A/ T, marks the conclusion of
 a co nditional structure started
 by I F, and resolves the
 forw ard conditional branch from
 IF, (if ELSE, is not
 pres ent).

 R/T: --- At R/T , marks the conclusion of
 a co nditional structure started
 by I F, .

C-3

C.4 CONTROL (Continued)

 ENDIF, A/T: addr 2 --- Alias for THEN,
 R/T: ---

C.5 RETURN

 BINARY A/T: --- addr At A/T , leaves the address of a
 retu rn point which, at R/T,
 R/T: nl n2 --- (n) will pull two 16-bit values
 from the stack and push the
 accu mulator (H/B) and the top
 mach ine stack byte (L/B) to the
 data stack.

 PUSH A/T: --- addr At A/T , leaves the address of
 the R/T return point which
 R/T: --- n wil l add the accumulator (H/B)
 and the top machine stack byte
 (L/B) to the data stack.

 PUT A/T: --- addr At A/T , leaves the address of
 the R/T return point which
 R/T: n1 --- n2 will write the accumulator
 (H/B) and the top machine stack
 byte (L/B) to replace the
 exis ting top data stack 16-bit
 valu e (n1).

 POP A/T: --- addr At A/T , leaves the address of
 the R/T return point which
 R/T: n --- wil l pull a 16-bit value from
 the data stack and continue
 inte rpretation.

 PUSH0A A/T: --- addr At A/T , leaves the address of
 the R/T return point which
 R/T: --- n wil l push a zero (H/B) and the
 accu mulator (L/B) onto the data
 stac k.

 PUT0A A/T: --- addr At A/T , leaves the address of
 the R/T return point which
 R/T: n1 --- n2 will write a zero (H/B) and the
 accu mulator (L/B) to replace
 the existing data stack 16-bit
 Valu e (n1).

C-4

C.5 RETURN (Continued)

 POPTWO A/T: --- addr At ass embly-time, leaves the
 addr ess of the run-time return
 R/T: nl n2 --- retu rn which will pull two
 16-b it values from the data
 stac k and continue
 inte rpretation.

 NEXT A/T: --- addr At ass embly-time, leaves the
 addr ess of the FORTH
 inne r-interpreter.

C.6 STACK

 RP) A/T: --- 101 (hex) At A/T , used to address the
 bott om of the Return Stack.

 TOP A/T: --- 0 At A/ T, used to address the top
 item on the data stack.

 SEC A/T: --- 2 At A/ T, used to address the
 seco nd item on the data stack.

 SETUP A/T: --- addr Leaves the address of a utility
 rout ine to move items from the
 stac k to the N area on z-page.

C.7 REGISTERS

 N A/T: --- addr Leave s the address of a
 nine -byte work space in page
 zero .

 IP A/T: --- addr Leaves the address of the
 poin ter to the next FORTH
 exec ution address in a
 colo n-definition to be
 inte rpreted.

 UP A/T: --- addr Leaves the address of the
 poin ter to the base of the user
 area .

 W A/T: --- addr Leaves the address of the
 poin ter to the code field of
 the FORTH word being executed.

 XSAVE A/T: --- addr Leave s the address of a
 temp orary buffer for saving the
 X re gister.

C-5

C.8 MISCELLANEOUS

 END-CODE A/T: --- Marks the end of a CODE-
 defi nition.

 MEM A/T: --- Sets M ODE to direct memory
 addr essing on z-page.

C-6

APPENDIX D

RSC-FORTH ASSEMBLER GLOSSARY

This glossary contains the definitions of all words in the RSC-FORTH ASSEMBLER
vocabulary with exception of the op-codes. The defi nitions are presented in
ASCII sort order.

Stack Notation

The first line of each entry shows a symbolic descr iption of the action of the
procedure on the parameter stack. The symbols on th e left indicate the order in
which input parameters have been placed on the stac k. Three dashes "——" indicate
the execution point; any parameters left on the sta ck after execution are listed
on the right. In this notation, the top of the stac k is to the right.

Symbol Definition

addr,addr1,... memory address
cc,cc1,... condition code
n,n1,... 16-bit signed number

Pronunciation

The natural language pronunciation of FORTH names i s given in double quotes (").

Capitalization

Word names as used within the glossary are conventi onally written in upper-case
characters. Lower case is used when reference is ma de to the run-time machine
codes, (not directly accessible), e.g., VARIABLE is the user word to create a
variable. Each use of that variable makes use of a code sequence 'variable1
which executes the function of the particular varia ble.

Group Key Words (GROUP)

 ADDRESS Addressing Mode
 OP-CODE Operation Code
 CONTROL Control Structures
 STACK Stack Addressing
 REGISTER Assembly Register
 CONDITION Conditional Specif iers
 RETURN Return of Control

D-1

WORD STACK NOTATION/DEFINITION GROUP

--- ADDRES S
 "immediate"
 Specifies 'immediate' addressing mode fo r the next
 op-code generated.

) --- ADDRES S
 "indirect"
 Specifies 'indirect absolute* addressing mode for
 the next op-code generated.

)Y --- ADDRES S
 "indirect indexed Y"
 Specifies 'indirect indexed Y' addressin g mode for
 the next op-code generated.

,X --- ADDRES S
 "indexed x"
 Specifies 'indexed X' addressing mode fo r the next
 op-code generated.

,Y --- ADDRES S
 "indexed Y"
 Specifies 'indexed Y' addressing mode fo r the next
 op-code generated.

.A --- ADDRES S
 "accumulator"
 Specifies accumulator addressing mode fo r the next
 op-code generated.

0< --- cc (assembly-time) CONDIT ION
 "zero-less"
 Specifies that the immediately following conditional
 will branch based on the processor negat ive flag
 status bit being negative (N=l), i.e., l ess than zero.
 The flag cc is left at assembly-time; th ere is
 no run-time effect on the stack.

0= --- cc (assembly-time) CONDIT ION
 "zero-equals"
 Specifies that the immediately following conditional
 will branch based on the processor zero flag status
 bit being equal to one (Z=l); i.e. equal to zero.
 The flag cc is left at assembly-time; th ere is
 no run-time effect on the stack.

D-2

WORD STACK NOTATION/DEFINITION GROUP

AGAIN, addr 1 --- (assembly-time) CONTRO L
 --- (run-time)
 "again"
 Occurs in a CODE-definition in the form:

 BEGIN, . . . AGAIN,

 At assembly-time, AGAIN, assembles a JMP
 instruction to addr. The number 1 is iss ued
 for error checking.

 At run-time, AGAIN, branches uncondition ally
 to its matching BEGIN, .

BEGIN, --- addr 1 (assembly-time) CONTRO L
 --- (run-time)
 Occurs in a CODE-definition in the form:

 BEGIN, . . . cc UNTIL,

 At assembly time, BEGIN , leaves the dic tionary
 pointer address addr and the value 1 for later
 testing of conditional pairing by UNTIL, or AGAIN, .

 At run-time, BEGIN, marks the start of a n assembly
 sequence repeatedly executed. It serves as the
 return point for the corresponding UNTIL , .
 When reaching UNTIL, a branch to BEGIN, will occur
 if the processor status bit given by cc is false;
 otherwise execution continues ahead.

BINARY, --- addr (assembly-time) RETURN
 nl n2 --- (n) (run-time)
 "binary"
 At assembly-time constant which leaves t he machine
 address of a return point which, at run- time, will
 pull two 16-bit values from the stack an d push the
 accumulator (high-byte) and the top mach ine stack
 byte (as low-byte) to the data stack.

BITCLR n addr --- cc (assembly time) COND ITION

BITSET n addr --- cc (assembly time) COND ITION

D-3

WORD STACK NOTATION/DEFINITION GROUP

CS --- cc (assembly-time) CONDIT ION
 "carry-set"
 Specifies that the immediately following
 conditional will branch based on the pro cessor
 carry status flag being set (C=1).
 The flag cc is left at assembly-time; th ere is
 no run-time effect on the stack.

ELSE, addr1 2 --- addr2 2 CONTRO L
 "else"
 Occurs within a CODE-definition in the f orm:

 cc IF, <true part> ELSE, <false pa rt>
 THEN,

 At assembly-time, ELSE, assembles a forw ard jump
 to just after THEN, and resolves a pendi ng forward
 conditional branch from IF, . The value 2 is used
 for error checking of conditional pairin g.

 At run-time, if the condition code speci fied by cc
 is false, execution will skip to the mac hine code
 following ELSE, .

END-CODE --- MISC
 "end-code"
 An error check word marking the end of a
 CODE-definition. Successful execution t o and
 including END-CODE will unsmudge the mos t recent
 CURRENT vocabulary definition, making it
 available for execution.
 END-CODE also exits the ASSEMBLER making CONTEXT
 the same as CURRENT .

ENDIF, addr 2 --- (assembly-time)
 --- (run-time) CONTRO L
 "end-if"
 Another name for THEN, .

IF, --- addr 2 (assembly-time) CONTRO L
 cc --- addr 2 (run-time)
 "if"
 Occurs within a code definition in the f orm:

 cc IF, <true part> ELSE, <false part>
 THEN,

D-4

WORD STACK NOTATION/DEFINITION GROUP

IF, At assembly-time IF, creates an unresolv ed
(Cont.) forward branch based on the condition co de cc, and
 leaves addr and 2 for resolution of the branch by
 the corresponding ELSE, or THEN, .
 Conditionals may be nested.

 At run-time, IF, branches based on the
 condition code cc (0< or 0= or CS). If the
 specified processor status is true, exec ution
 continues ahead, otherwise branching occ urs to
 just after ELSE, (or THEN, when ELSE, i s not
 present). At ELSE, execution resumes at the
 corresponding THEN, .

IP --- addr (assembly-time) REGIST ER
 "i-p"
 Used in a CODE-definition in the form:

 IP STA, or IP)Y LDA,

 At assembly-time, a constant which leave s the
 address of the pointer to the next FORTH execution
 address in a colon-definition to be inte rpreted.

 At run-time, NEXT moves IP ahead within a
 colon-definition. Therefore, IP points j ust
 after the execution address being interp reted.
 If an in-line data structure has been co mpiled
 (i.e., a character string), indexing ahe ad by
 IP can access this data:

 IP STA, or IP)Y LDA,

 loads the third byte ahead in the colon- definition
 being interpreted.

MEM --- MISC
 "memory"
 Used within the assembler to set MODE to the
 default value for direct memory addressi ng on
 z-page.

D-5

WORD STACK NOTATION/DEFINITION GROUP

N --- addr (assembly-time) REGIST ER
 "n"
 Used in a CODE-definition in the form:

 N 1 - STA, or N 2+)Y ADC,

 A constant which leaves the address of a 9 byte
 workspace in z-page. Within a single COD E-
 definition, free use may be made over th e range
 N-1 thru N+7. See SETUP .

NEXT --- addr (assembly-time) RETURN
 "next"
 A constant which leaves the machine addr ess of the
 FORTH address interpreter. All CODE-defi nitions
 must return execution to NEXT, or includ e code
 that returns to NEXT (i.e., PUSH , PUT ,
 PUSH0A , PUT0A , BINARY , POP , POPTW O).

NOT ccl --- cc2 (assembly-time) CONDIT ION
 "not"
 When assembling, reverse the condition c ode for
 the following conditional. For example:

 0= NOT IF, <true part> THEN,

 will branch based on "not equal to zero" .
 NOT is not valid for BITCLR or BITSET re versal.

POP --- addr (assembly-time) RETURN
 n --- (run-time)
 "pop"
 A constant which leaves (during assembly) the
 machine address of the return point whic h,
 at run-time, will pull a 16-bit value fr om the
 data stack and continue interpretation.

POPTWO --- addr (assembly-time) RETURN
 n1 n2 --- (run-time)
 "pop-two"
 At assembly time, constant which leaves machine
 address of the return point which, at ru n-time,
 will pull two 16-bit values from the dat a stack
 and continue interpretation.

D-6

WORD STACK NOTATION/DEFINITION GROUP

PUSH --- addr (assembly-time) RETURN
 --- n (run-time)
 "push"
 At assembly-time, constant which leaves the
 machine address of the return point whic h,
 at run-time, will add the accumulator
 (as high-byte) and the top machine stack byte
 (as low-byte) to the data stack.

PUSH0A --- addr (assembly-time) RETURN
 --- n (run-time)
 "push-0-a"
 At assembly-time, constant which leaves the
 machine address of the return point whic h,
 at run-time, will add a zero (as high by te)
 and the accumulator (as low byte) to the data stack.

PUT --- addr (assembly-time) RETURN
 n1 --- n2 (run-time)
 "put"
 At assembly time, constant which leaves the
 machine address of the return point whic h,
 at run-time, will write the accumulator
 (as high-byte) and the top machine stack byte
 (as low-byte) over the existing data sta ck
 16-bit value (n1).

PUT0A --- addr (assembly-time) RETURN
 n1 --- n2 (run-time)
 "put-zero-a"
 At assembly-time, constant which leaves the
 machine address of the return point whic h,
 at run-time, will write a zero (as high- byte)
 and the accumulator as low-byte) over th e
 existing data stack 16-bit value (n1).

REPEAT, addrB 1 addrW 3 --- CONTRO L
 (assembly-time) --- (run-time)
 "repeat"
 Occurs in a code definition in the form:

 BEGIN, ... cc WHILE, ... REPE AT,

D-7

WORD STACK NOTATION/DEFINITION GROUP

REPEAT, At assembly-time, REPEAT, assembles as J MP
(Cont.) instruction to the instruction immediate ly
 following the BEGIN, word.

 At run-time REPEAT, unconditionally bra nches
 back to its matching BEGIN, .

RP) --- 101 (assembly-time) STACK
 "return-pointer"
 Used in a CODE-definition in the form:

 RP) LDA, or RP) 3+ STA,

 Addresses the top byte of the return sta ck
 (containing the low byte) by selecting t he
 ,X mode and leaving n=$0001. n may be mo dified to
 another byte offset. Before operating on the
 return stack the X register must be save d in
 XSAVE and TSX, executed.
 Before returning to NEXT, the X register must
 be restored.

SEC --- 2 (assembly-time) STACK
 "second"
 Used in a CODE-definition in the form:

 SEC LDA, or SEC 1+ STA,

 Addresses the second 16-bit item on the data stack
 by selecting the , X,X address mode and leaving 2
 on the stack.

SETUP --- addr (assembly-time) STACK
 "setup"
 A constant whose value is the address of a utility
 routine to move items from the stack to the N area
 of zero page. The number of items to mov e (1, 2,
 3 or 4 only) is in the A register.

THEN, addr 2 --- (assembly-time) CONTRO L
 --- (run-time)
 "then"
 Occurs in a CODE-definition in the form:

 cc IF, <true part> ELSE, <false p art> THEN,

D-8

WORD STACK NOTATION/DEFINITION GROUP

THEN, At assembly-time, THEN, marks the concl usion of
(Cont.) a conditional structure. The conditional branch
 instructions generated by IF, and the JM P
 instruction generated ELSE, point to the
 instruction immediately following THEN, .
 When assembling, addr and 2 are used to resolve
 the pending forward branch to THEN, .

 At run-time THEN, marks the conclusion o f a
 conditional structure. Execution of eith er the
 true part or false part resumes followin g THEN, .

TOP --- 0 (assembly-time) STACK
 "top"
 Used during code assembly in the form:

 TOP LDA, or TOP 1+ X) STA,

 Addresses the top of the data stack
 (containing the low byte) by selecting t he
 ,X mode and leaving n=0, at assembly-tim e.
 This value of n may be modified to anoth er
 byte offset into the data stack.
 Must be followed by a multi-mode op-code mnemonic.

UNTIL, addr 1 cc --- (assembly-time) CONT ROL
 --- (run-time)
 "until"
 Occurs in a CODE-definition in the form:

 BEGIN, ... cc UNTIL,

 At assembly-time, UNTIL, assembles a con ditional
 relative branch to addr based on the con dition
 code cc. The number 1 is used for error checking.

 At run-time, UNTIL, controls the conditi onal
 branching back to BEGIN, . If the proces sor status
 bit specified by cc is false, execution returns to
 BEGIN, ; otherwise execution continues a head.

D-9

WORD STACK NOTATION/DEFINITION GROUP

UP --- addr (assembly-time) REGIST ER
 "user pointer"
 Used in a CODE-definition in the form:

 UP LDA, or UP)Y STA,

 A constant which leaves the address of t he pointer
 to the base of the user area. The instru ctions

 HEX 12 # LDY, UP)Y LDA,

 will load the low byte of the sixth user variable, DP.

VS --- cc (assembly-time) CONDIT ION
 "overflow set"
 Specifies that the immediately following
 conditional will branch based on the pro cessor
 status overflow flag being on (V=l).
 The flag cc is left at assembly-time; th ere is
 no run-time effect on the stack.

W --- addr (assembly-time) REGIST ER

 Used in a CODE-definition in the form:

 W 1+ STA, or W 1 - JMP, or W)Y ADC,

 At assembly-time constant which leaves a t
 assembly-time the address of the pointer to the
 code field (execution address) of the FO RTH
 dictionary word being executed. Indexin g
 relative to W can yield any byte in the
 definitions parameter field. For example , the
 instructions

 2 # LDY, W)Y LDA,

 will fetch the first byte of the paramet er field.

D-10

WORD STACK NOTATION/DEFINITION GROUP

WHILE, addrB 1 --- addrB 1 addrW 3 CONTR OL
 (assembly-time) --- (run-time)
 "while"
 Occurs in a CODE-definition in the form:

 BEGIN, ... cc WHILE, ... REPEAT,

 At assembly-time, WHILE, assembles a con ditional
 relative branch instruction to the instr uction
 immediately following the REPEAT, based on the
 condition code cc.

 At run-time WHILE, controls the conditio nal
 branching to just past REPEAT, .
 If the processor status bit specified by cc is
 true, WHILE, continues execution through to REPEAT,
 which then branches back to BEGIN, .
 If cc is false a jump is made to just af ter REPEAT,
 and execution continues.

X) ADDRES S
 "indexed indirect X"
 Specifies "indexed indirect X" addressin g mode for
 the next op-code generated.

XSAVE --- addr (assembly-time) REGIST ER
 "x-save"
 Used in a CODE-definition in the form:

 XSAVE STX, or XSAVE LDX,
 A constant which leaves the address at a ssembly
 time of a temporary buffer for saving th e X register.
 Since the X register indexes to the data stack
 in z-page, it must be saved and restored when used
 for other purposes.

D-11

This page is intentionally left blank

D-12

APPENDIX E

ERROR MESSAGES AND RECOVERY

E.1 STANDARD ERROR MESSAGE

The standard FORTH error message is "?" . This ques tion mark is output along
with the most recently interpreted word when that w ord can not be found in the
dictionary and will not convert into a number in th e current BASE . For example:

 RSC-FORTH V1.6

 QUERTY
 QUERTY ?

 ABC
 ABC ?

 HEX OK

 ABC OK

 DECIMAL . <RETURN> 2748 OK

Upon initialization, QUERTY and ABC were not in the dictionary, therefore, the ?
error message was displayed when they were entered. After the number base of the
I/O was changed to HEX , however, ABC became a vali d number. ABC was then
accepted as a valid number upon the record entry at tempt, converted to internal
two's complement binary format, and stored on the s tack. The number was then
removed from the stack and displayed in decimal.

E.2 STANDARD ERROR MESSAGE WORD

RSC-FORTH has a standard error message word

 ?ERROR

which takes two items from the stack:

 t n ?ERROR

where t is Boolean and n is the desired error numbe r.

If the Boolean is false, nothing happens; but if it is true, one of three things
happen depending on the value of the user variable WARNING . If WARNING is
zero, the number n is printed as an error message. If WARNING is greater than
zero, a disk is assumed to be in use. Then n becom es the line number relative
to line 0, screen 4 of drive 0 and the contents of that line number are
displayed in ASCII. The line number may be negative , zero or positive and
greater than fifteen. The line number is simply an offset from line 0 screen 4.
If WARNING is less than zero, the word ABORT is executed.

E-1

E.3 RSC-FORTH ERROR DEFINITIONS

The error conditions detected by RSC-FORTH are list ed in Table E-1. For
increased utility the two most common errors are gi ven in English. These are
error message 1, STACK EMPTY , and warning message 4, NOT UNIQUE .

The last action of error messages processing is to clear the stacks and execute
QUIT . However, the warning message 'NOT UNIQUE' is simply output, it has no
effect on the stacks and execution continues normal ly.

Error message number 3 is slightly different in tha t it prints the name of the
code word being defined, the name of the assembler op-code word being
interpreted, and the message number or message.

Table E-l. RSC-FORTH Error Message

 --- -------------------
 Number Message Definition A ction
 --- -------------------

 0 ? Echoed word was D efine the named
 the last one inter- i tem. Check number
 preted. Name is not c onversion base.
 in the dictionary
 and is not a number.

 1 STACK Parameter stack D on't pull more
 EMPTY is empty i tems off the
 s tack than are
 t here.

 2 DICTIONARY The dictionary I ncrease space for
 FULL space is used d ictionary by
 up. FIRST HERE - F ORGETing entries
 is less than $AO. o r moving FIRST .

 3 HAS The address mode U se a correct
 INCORRECT for that assembler a ddress mode.
 ADDRESS op-code is S ee R6500
 MODE incorrect. P rogramming Manual.

 4 NOT The dictionary entry B e aware that the
 UNIQUE <name> just created n ew definition of
 is not unique. < name> obscures
 t he old one and
 a ll future refer-
 e nces to <name>
 w ill be to the
 n ew entry (often
 a n advantage).

E-2

Table E-1. RSC-FORTH Error Message (Continued)

 --- -------------------
 Number Message Definition A ction
 --- -------------------
 5 -- Not assigned - -

 6 DISC The disk block T his is available
 RANGE? asked for is out f or the user to
 of range. p ut in his
 d efinition of R/W.

 7 FULL The parameter R emove some stack
 STACK stack is full i tem. DROP or
 (more than 50 o utput.
 items).

 8 DISC There has been a T his is available
 ERROR! disk error. f or the user's R/W
 definition.

 9-16 -- Not assigned

 17 COMPI- The word just D on't use compila-
 LATION interpreted must t ion words inter-
 ONLY be used in a p retively.
 definition.

 18 EXECUTION The word just D on't use interpre-
 ONLY interpreted must be t ive words in a
 used outside of a d efinition.
 definition.

 19 CONDI- Omitted word or P air conditionals
 TIONALS incorrect nesting c orrectly.
 NOT PAIRED of conditionals.

 20 DEFINITION The current defini- F inish definition.
 NOT tion is not yet
 FINISHED finished.

 21 IN The word in question C ease trying to
 PROTECTED is below the FENCE F ORGET a protected
 DICTIONARY w ord or move FENCE.

 22 USE ONLY Incorrect use of U se the word
 WHEN the word --> - -> only while
 LOADING l oading.

E-3

E.4 DISK ERRORS

Floppy disk operation errors are reported in the er ror byte left on the stack
after DREAD or DWRITE is executed. The individual m eanings of each bit in this
stack byte is defined in Table E-2.

Table E-2. Disk Error Byte Description

 Bit No. Description

 7 - - -

 6 Disk is write protected

 5 Read Record Type error (1 = Delete d Data Mark)
 Write error

 4 Record not found (Seek error in Fo rmat)

 3 CRC error in ID Field

 2 Lost Data error

 1 - - -

 0 FDC device is busy.

E-4

APPENDIX F

PAGE ZERO and ONE MEMORY MAP

 ___ ____________________

 Cold Warm
 Start Start
 Hex No. Hex Hex Parameter
 Address Bytes Value Value Name P arameter Description
 ___ ____________________

 000-00F 16 - - - - - I nternal ports
 010-01F 16 - - - - - I nternal registers
 020-03F 32 - - - - - R eserved
 040-041 2 (COLD) - - IRQVEC
 042-043 2 (COLD) - - NMIVEC
 044-045 2 (IN) (IN) UKEY
 046-047 2 (OUT) (OUT) UEMIT
 048-049 2 00 03 00 03 UP
 04A 1 00 00 INTFLG
 04B 1 6C 6C (W-1)
 04C-04D 2 - - - - W
 04E-04F 2 - - - - IP
 050 1 - - (N-1)
 051-058 8 — - - - N
 059-05A 2 - - - - XSAVE
 05B-05C 2 (COLD) - - INTVEC H igh level interrupt
 v ector
 05D - - - TOS L ast free memory in
 d ata stack
 05D-0C1 100 - - - - - P arameter (data) stack
 0C2-0FF 60 - - - - - R eturn stack
 100 1 - - - F loppy Disk Status/
 C ommand Register
 101 1 - - - F loppy Disk Track
 R egister
 102 1 - - - F loppy Disk Sector
 R egister
 103 1 - - - F loppy Disk Data
 R egister
 106 1 - - - F loppy Disk Control
 R egister

F-1

This page is intentionally left blank.

F-2

APPENDIX G

USER VARIABLES RAM MAP
 ___ _____________________

 Cold Warm
 Start Start
 Hex No. Hex Hex Parameter
 Address Bytes Value Value Name Parameter Description
 ___ _____________________

 300-301 2 80 03 80 03 TIB Terminal Input Buffer address.
 302-303 2 FF 00 FF 00 R0 Return Stack base address.
 304-305 2 C2 00 C2 00 S0 Parameter Stack base address.
 306-307 2 50 00 - - UC/L No. of characters/line.
 308-309 2 7E 03 - - UPAD Location of PAD in memory.
 30A-30B 2 (DISK) - - UR/W CFA of UR/W orphan word.
 30C-30D 2 10 00 - - BASE Current I/O base number.
 30E-30F 2 _ _ _ _ CLD/WRM Cold/warm reset flag.
 310-311 2 _ _ _ _ IN Byte offset in current input
 stream.
 312-313 2 _ _ _ _ DPL Number of decimals in double-
 precision input.
 314-315 2 _ _ _ _ HLD Address of current output.
 316-317 2 _ _ _ _ DISKNO Number of selected disk drive
 318-31B 4 FF FF - CYLINDER Track of each disk.
 FF FF
 31C-31D* 2 80 - - - B/SIDE Blocks per side per disk.
 31E-31F 2 F8 17 - - UFIRST Start of mass storage buffer.
 320-321 2 00 20 - - ULIMIT End of mass storage buffer.
 322-323 2 00 00 - - OFFSET Block offset to disk drives.
 324-325 2 31 00 - - WIDTH Number of letters in name.
 326-327 2 00 00 - - WARNING Error message action switch.
 328-329 2 04 04 - - FENCE Forget protection point
 32A-32B 2 - - - - DP Dictionary pointer
 32C-32D 2 00 00 - - DP/ Dictionary pointer for heads
 when headerless
 32E-32F 2 00 00 - - HEADERLESS Headerless code flag.
 330-331 2 3C 03 - - VOC-LINK Last VOC field.
 332-333 2 81 A0 - - FORTH chain head.
 334-335 2 04 04 - - FORTH vocabulary pointer.
 336-337 2 00 00 - - FORTH vocabulary link.
 338-339 2 81 A0 - - ASSEMBLER chain head.
 33A-33B 2 36 03 - - ASSEMBLER vocabulary pointer.
 33C-33D 2 00 00 - - ASSEMBLER vocabulary link.
 33E-33F 2 5C 3C - - UABORT CFA of UABORT orphan word.
 340-341 2 - - - - USE Mass storage buffer to use
 342-343 2 - - - - PREV Mass storage buffer just used
 344-345 2 - - - - BLK Number of current blk.
 346-347 2 - - - - SCR Most recently listed screen.
 348-349 2 - - - - CONTEXT CONTEXT vocabulary pointer.

 *Last address referred to by kernel - followi ng variables used in
 R65FR1 Development ROM.

G-1

USER VARIABLES RAM MAP (Continued)

 ___ _____________________

 Cold Warm
 Start Start
 Hex No. Hex Hex Parameter
 Address Bytes Value Value Name Parameter Description
 ___ _____________________

 34A-34B 2 - - - - CURRENT CURRENT vocabulary pointer.
 34C-34D 2 - - - - STATE C ontains state of computation.
 34E-34F 2 - - - - CSP Check Stack Pointer.
 350-351 2 - - - - MODE A ssembler addressing mode.
 352-353 2 - - - - KHZ S pace for system clock
 frequency.
 354-37E 43 - - - - USERPAD U ser available (less room for
 PAD).
 380-3FF 128 - - - - T erminal Input Buffer.

G-2

APPENDIX H

ASCII CHARACTER SET

HEX DEC ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC ASCII
00 0 NUL � 20 32 SP 40 64 @ 60 96
01 1 SOH 21 33 ! 41 65 A 61 97 a
02 2 STX 22 34 " 42 66 B 62 98 b
03 3 ETX 23 35 # 43 67 C 63 99 c
04 4 EOT 24 36 $ 44 68 D 64 100 d
05 5 ENQ 25 37 % 45 69 E 65 101 e
06 6 ACK 26 38 & 46 70 F 66 102 f
07 7 BEL 27 39 ' 47 71 G 67 103 g
08 8 BS 28 40 (48 72 H 68 104 h
09 9 HT 29 41) 49 73 I 69 105 i
OA 10 LF 2A 42 * 4A 74 J 6A 106 j
OB 11 VT 2B 43 + 4B 75 K 6B 107 k
OC 12 FF 2C 44 , 4C 76 L 6C 108 l
OD 13 CR 2D 45 - 4D 77 M 6D 109 m
OE 14 SO 2E 46 . 4E 78 N 6E 110 n
OF 15 SI 2F 47 / 4F 79 0 6F 111 0
10 16 DLE 30 48 0 50 80 P 70 112 P
11 17 DC1 31 49 1 51 81 Q 71 113 q
12 18 DC2 32 50 2 52 82 R 72 114 r
13 19 DC3 33 51 3 53 83 S 73 115 s
14 20 DC4 34 52 4 54 84 T 74 116 t
15 21 NAK 35 53 5 55 85 U 75 117 u
16 22 SYN 36 54 6 56 86 V 76 118 V
17 23 ETB 37 55 7 57 87 W 77 119 W
18 24 CAN 38 56 8 58 88 X 78 120 X
19 25 EM 39 57 9 59 89 Y 79 121 y
1A 26 SUB 3A 58 : 5A 90 Z 7A 122 Z
IB 27 ESC 3B 59 ; 5B 91 [7B 123 {
1C 28 FS 3C 60 < 5C 92 \ 7C 124 |
ID 29 GS 3D 61 = 5D 93] 7D 125 }
IE 30 RS 3E 62 > 5E 94 � 7E 126 ~
IF 31 VS 3F 63 ? 5F 95 � 7F 127 DEL

NUL — Null DLE - Data Link Escape
SOH - Start of Heading DC - Device Cont rol
STX - Start of Text NAK - Negative Ac knowledge
ETX - End of Text SYN - Synchronous Idle
EOT - End of Transmission ETB - End of Tra nsmission Block
ENQ - Enquiry CAN - Cancel
ACK - Acknowledge EM - End of Medi um
BEL - Bell SUB - Substitute
BS - Backspace FSC - Escape
HT - Horizontal Tabulation FS - File Separa tor
LF - Line Feed GS - Group Separ ator
VT - Vertical Tabulation RS - Record Sep arator
FF - Form Feed US - Unit Separa tor
CR - Carriage Return SP - Space (Blan k)
SO - Shift Out DEL - Delete
SI - Shift In

H-1

APPENDIX I

FORTH STRING WORDS

This appendix defines FORTH words that can be creat ed to handle character string
data. The defined words are based on, and extend, f unctions described by Ralph
Deane in an article entitled "A Proposal On Strings for FORTH," published in Dr.
Dobbs Journal of Computer Calisthenics & Orthodonia , November/December 1980 (See
Appendix N) .

1.1 WORD COLON DEFINITIONS

The following string handling words can be implemen ted using the colon-
definitions listed in Table 1-1:

 FORTH Word Function

 STRING Define a string
 " Enter text
 S! Store entire string
 SUB Substitute part of stri ng
 MID$ Get m characters of str ing
 LEFT$ Get left-most n charact ers of string
 RIGHT$ Get right-most n charact ers of string
 VAL Convert string to numer ic value
 STR$ Convert numeric to stri ng
 LEN Get current length of s tring
 MLEN Get maximum length of s tring
 S+ Add strings
 S= Compare strings

Table 1-1. FORTH String Words

 : SRCH
 DUP BEGIN DUP
 C@ SWAP 1+ SWAP
 0= END SWAP - 1- ;

 : STRING
 <BUILDS ABS
 255 MIN 1 MAX DUP
 C,
 0 DO 32 C, LOOP 0 C,
 DOES> 1+ DUP SRCH ;

 0 VARIABLE IB
 254 ALLOT

I-1

Table I-1. FORTH String Words (Continued)

 : (")
 R COUNT DUP 1+
 R> + >R ;

 : "
 34 STATE @ IF
 COMPILE (") WORD
 HERE C@ 1+ ALLOT
 ELSE WORD HERE COUNT
 IB SWAP ROT OVER IB
 SWAP 1+ CMOVE 2DUP
 + 0 SWAP C! THEN ;
 IMMEDIATE

 : VAL
 OVER + BL SWAP
 C! 1- NUMBER ;

 : STR$
 SWAP OVER DABS
 <# #S SIGN #> ;

 : MLEN
 DROP 1- C@ ;

 : S!
 DROP DUP 1- C@
 ROT MIN 1 MAX 2DUP
 + 0 SWAP C! CMOVE ;

 : LEN
 SWAP DROP ;

 : MID$
 SWAP >R ROT
 MIN 1 MAX SWAP OVER
 MAX OVER - 1+ SWAP
 R> + 1- SWAP OVER
 SRCH MIN ;

 : LEFT$
 >R >R 1 SWAP
 R> R> MID$;

I-2

Table I-1. FORTH String Words (Continued)

 : RIGHT$
 >R >R 256
 R> R> MID$;

 : S+
 ROT >R ROT R>
 SWAP OVER IB SWAP
 CMOVE SWAP OVER +
 255 MIN DUP >R OVER
 - SWAP IB + SWAP
 CMOVE R> 0 OVER IB
 + C! IB SWAP ;

 : SUB
 ROT MIN 1 MAX
 CMOVE ;

 : S=
 ROT OVER
 = IF 1 SWAP 0 DO
 DROP OVER
 C@ OVER C@ = IF 1+
 SWAP 1+ SWAP 1 ELSE
 0 LEAVE THEN LOOP
 ELSE DROP 0 THEN
 SWAP
 DROP SWAP DROP ;

I.2 WORD DESCRIPTIONS

Each of the string words are described below. Note that there are two words,
SRCH and (") , and a variable area, IB , that ar e used internally by the
string functions and are not described.

 STRING

 STRING creates a word in the dictionary up to 255 characters.
 The string is initialized to all spaces with a zero at the end
 and the maximum length at the beginning.
 For example,

 30 STRING A$

 Creates a string named A$ which has room for 30 characters.
 When the name A$ is executed, the current len gth and the address
 of the text is put on the stack in the order required for the word
 TYPE .

I-3

 "

 " enters text into an intermediate buffer cal led IB ,
 if used in the immediate mode. In the compil e mode,
 the text is put into the dictionary. In eithe r case the
 length and text address is left on the stack.
 Text is terminated by another " .

 S!

 S! moves the entire string text from one stri ng to another,
 for example,

 " COWS EAT CORN" A$ S!

 puts the text "COWS EAT CORN" into the string A$.

 Also as an example, define another string BES T and move A$ into
 it

 40 STRING BEST
 A$ BEST S!

 MID$

 MID$ gets the m characters of a string starti ng at the nth
 character position, for example,

 6 3 A$ MID$ TYPE

 will print the word EAT .

 LEFT$

 LEFT$ gets the left-most n characters of a st ring, for example,

 3 BEST LEFT$ TYPE

 will print the word COW .

 RIGHT$

 In like manner RIGHT$ gets the right-most n c haracters of a string.
 The sequence

 10 A$ RIGHT$ BEST S!

 makes the string BEST now contain the word CO RN verified by

 BEST TYPE

I-4

 VAL

 VAL converts a string to a double-precision n umber, for example,

 " 128" VAL D.

 gives

 128

 STR$

 Conversely, STR$ converts a double-precision number into text.
 The sequence

 567. STR$ A$ S!

 makes the string A$ equal to "567.".

 LEN

 LEN returns the current length of a string, s uch as

 A$ LEN . <return> 3

 MLEN

 MLEN returns the maximum length of a string, such as

 A$ MLEN . <RETURN> 30

 SUB

 SUB allows substitution of characters in a st ring, for example,

 " COWS EAT CORN" A$ S!
 " ATE" 6 3 A$ MID$ SUB

 replaces EAT with ATE in string A$.

 S+

 S+ adds strings together and puts the result in IB , for example,

 " AND HAY" BEST S.!
 A$ BEST S+ BEST S!

 adds BEST to A$. Verify by

 BEST TYPE

 and get

 COWS EAT CORN AND HAY

I-5

 S=

 S= compares strings to see if they are equal in length and text.
 If so, a 1 is returned on the stack, else a 0 .

I-6

APPENDIX J

USER 24-HOUR CLOCK PROGRAM IN FORTH

This appendix describes a 24-hour clock program wri tten in FORTH using either
machine level (see Figure J-1) or interpretive inte rrupt (see Figure J-2)
handling. The 24-hour clock is maintained under int errupt control, using Timer 3
of the R65F11 or R65F12. The program allows you to initialize the clock, enter a
message that will be displayed with the time, and d isplay the time just once or
continuously.

J.1 HOW TO OPERATE THE PROGRAM

The 24-hour clock program is compiled into FORTH wo rds as described in the next
section. Once compiled you must be in FORTH to comm and the 24-hour clock
functions. Once initiated, however, the clock will continue to run as long as
it is not reset, Timer 3 operating mode is not alte red, or the processor
interrupt enable bit and the Interrupt Enable Regis ter (IER) are not altered to
inhibit the IRQ interrupt.

The 24-hour clock functions are entered from FORTH using any of four keys. These
four keys are defined as FORTH words and are entere d into the FORTH vocabulary.
The keys, their functions and the associated operat ing procedure is:

 M Key Allows a message of up to 32 chara cters to be displayed
 preceding the time value. Enter th e message as follows

 (1) Type M.
 (2) Press <RETURN>.
 (3) Type a message up to 30 charac ters long.
 (4) Press <RETURN> (do not press < RETURN> if exactly 30
 characters are entered). An ex ample is:

 M <RETURN> RSC-FORTH TIME
 <RETURN> OK

 T Key Allows the initial time value to b e entered. Enter it as
 follows:

 (1) Type in the time in the format HH.MM.SS
 (not HH:MM:SS).
 (2) Press <SPACE>.
 (3) Type T.
 (4) Press <RETURN>.

 For example:

 16.05.00 <SPACE> T <RETURN> OK

J-1

 D Key Causes the message and time to be displayed once each
 time D is typed. The display form at is:

 <MESSAGE>HH:MM:SS

 The time is displayed immediately after the message,
 for example,

 D<RETURN>
 RSC-FORTH TIME 16:05:10

 The system remains in the FORTH co mmand mode.

 C Key Causes the message and time to be continuously displayed.
 For example,

 C<RETURN>
 RSC-FORTH TIME 16:05:30

 Press a key to terminate the displ ay (although the clock
 will continue to run). The key wil l also be interpreted
 as a FORTH command or data charact er.

J-2

(24-HOUR CLOCK USING IRQ INTERRUPTS)
 HEX
 1C CONSTANT TBL
 1E CONSTANT TBH
 4F CONSTANT PERIODL
 C3 CONSTANT PERIODH
 0 VARIABLE DAY3 (2 BYTES)
 0 VARIABLE TICKS (4 BYTES) 0 ,

 CODE DISABLE (DISABLE USER VIA INT)
 00 # LDA,
 IER STA,
 NEXT JMP,
 END-CODE
 DISABLE

 ASSEMBLER HERE (SAVE IRQ VECTOR)
 PHA,
 CLC,
 5 # LDA, (50 MS)
 TICKS 3 + ADC,
 TICKS 3 + STA,
 64 # CMP, (AT 100?)
 CS IF, (>= 100)
 0 # LDA,
 TICKS 3+ STA,
 TICKS 2+ INC,
 TICKS 2+ LDA,
 3C # CMP,
 CS IF, (>= 60)
 0 # LDA,
 TICKS 2+ STA,
 TICKS 1+ INC,
 TICKS 1+ LDA,
 3C # CMP,
 CS IF, (>= 60)
 0 # LDA,
 TICKS 1+ STA,
 TICKS INC,
 TICKS LDA,
 18 # CMP,
 CS IF, (>= 24)
 0 # LDA,
 TICKS STA,
 DAY# INC,
 0= IF,
 DAY# 1+ INC,
 THEN,
 THEN,
 THEN,
 THEN,
 THEN,

 TBL LDA, (CLEAR TIMER IRQ)
 PLA,
 RTI, (RETURN)

Figure J-1. 24-Hour Clock Program
Using a Machine Level Interrupt Handler

J-3

 0040 ! (SET IRQ VECTOR)

 FORTH
 : INIT (INITIALIZE THE TIMER)
 E0 MCR C! (SET TB FREE-RUN MODE)
 PERIODL TBL C! , (LOAD TB VALUE - 1/100 SEC)
 PERIODH TBH C! , (ENABLE TIMER B INT)
 20 IER C!

 DECIMAL
 : :DD (TYPE M OR S)
 S->D <# # # 58 (:) HOLD #> TYPE ;

 : .T (PRINT TIME)
 TICKS C@ (HRS) 2 .R TICKS 1+ C@ (M)
 :DD (SAVE & PRINT SEC)
 TICKS 2+ C@ DUP :DD
 BEGIN (WAITING)
 TICKS 2+ C@
 OVER = NOT UNTIL DROP ;

 : M (ENTER 30 CHAR MESSAGE)
 601 DUP 30 EXPECT 600
 BEGIN
 1+ DUP C@ 0=
 UNTIL (NULL FOUND)
 601 - (# OF CHARACTERS)
 600 C! (FOR TYPE) ;

 : .M (PRINT MESSAGE)
 600 COUNT 30 MIN TYPE ;

 : D
 DECIMAL .M .T ;

 : T! (SET TIME)
 100 U/ (GET SEC)
 100 /MOD (MIN HRS)
 TICKS C! (LOAD HRS)
 TICKS 1+ C! (MIN)
 TICKS 2+ C! (& SEC)
 0 TICKS 3 + C! (ZERO 100THS) ;

 : T (SET TIME & GO)
 T! INIT ;

 : C (CONTINUOUSLY DISPLAY MST & TIME)
 BEGIN 24 EMIT (BLANK CURSOR)
 13 EMIT (STAY ON LINE) D ?TERMINAL
 UNTIL 23 EMIT (RESTORE CURSOR) QUIT ;

 : D (DISPLAY MSG & TIME ONCE)
 CR D QUIT ;

Figure J-1. 24-Hour Clock Program
Using a Machine Interrupt Handler (Cont'd)

J-4

 (24-HOUR CLOCK USING FORTH INTERRUPTS)
 HEX
 1C CONSTANT TBL
 1E CONSTANT TBH
 4F CONSTANT PERIODL
 C3 CONSTANT PERIODH

 0 VARIABLE DAY# (2 BYTES)
 0 VARIABLE TICKS (4 BYTES) 0 ,

 CODE DISABLE (DISABLE INT)
 00 # LDA,
 IER STA,
 NEXT JMP,
 END-CODE
 DISABLE

 (MACHINE CODE INTERRUPT SERVICE)
 ASSEMBLER HERE (SAVE IRQ VECTOR)
 PHA,
 80 # LDA, (SET INT REQUEST)
 INTFLG ORA,
 INTFLG STA,
 TBL LDA, (CLEAR USER VIA IRQ)
 PLA,
 IRQRTN JMP, (RETURN TO I/O ROM)

 CODE ARM (RETURN FROM FORTH INTERRUPTS)
 BF # LDA, (RESET INT REQUEST BIT)
 INTFLG AND,
 INTFLG STA,
 ' ;S JMP, (RESTORE INTERRUPTED IP)
 END-CODE

 IRQVEC ! (SET IRQ VECTOR)

 FORTH
 : INIT (INITIALIZE THE USER VIA)
 E0 UACR C! (SET TB FREE-RUN MODE)
 PERIODL TBL C! (LOAD TB VALUE = 1/100 SEC)
 PERIODH TBH C!
 20 IER C! ; (ENABLE TIMER B INT)

 DECIMAL
 : +!L (INCREMENT / STORE / LIMIT CHECK)
 OVER +! (ADD INC.)
 SWAP OVER C@ < DUP
 IF 0 ROT C!
 ELSE SWAP DROP
 THEN ;

 : T+ (FORTH LEVEL INTERRUPT SERVICE)
 99 TICKS 3 + 5 +!L (1/100 SEC COUNT)
 IF 59 TICKS 2+ 1 +!L (SECONDS)
 IF 59 TICKS 1+ 1 +!L (MINUTES)
 IF 23 TICKS 1 +!L (HOURS)
 THEN

Figure J-2. 24-Hour Clock Program

Using an Interpretive Interrupt Handler

J-5

 THEN
 THEN
 ARM [SMUDGE (SIMILAR TO ;)

 ' T+ CFA (PUT ADDRESS ON STACK)
 ASSEMBLER INTVEC ! (SAVE INT VECTOR)

 FORTH
 : :DD (TYPE M OR S)
 S->D <# # # 58 (:) HOLD #> TYPE ;

 : .T (PRINT TIME)
 TICKS C@ (HRS) 2 .R
 TICKS 1+ C@ :DD (MIN)
 TICKS 2+ C@ DUP :DD (SAVE & DISP SEC)
 BEGIN (WAITING FOR A SECOND CHANGE)
 TICKS 2+ C@
 OVER = NOT
 UNTIL DROP ;

 : M (ENTER 30 CHAR MESSAGE)
 601 DUP 30 EXPECT 600
 BEGIN
 1+ DUP C@ 0 =
 UNTIL (NULL FOUND)
 601 - (# OF CHARACTERS)
 600 C! (FOR TYPE) ;

 : .M (PRINT MESSAGE)
 600 COUNT 30 MIN TYPE ;

 : D
 DECIMAL .M .T ;

 : T! (SET TIME)
 100 U/ (GET SEC)
 100 /MOD (MIN HRS)
 TICKS C! (LOAD HRS)
 TICKS 1+ C! (LOAD MIN)
 TICKS 2+ C! (LOAD SEC)
 0 TICKS 3 + C! ; (ZERO 100TH SEC)

 : C (CONTINUOUSLY DISPLAY MSG & TIME)
 BEGIN 24 EMIT (BLANK CURSOR)
 13 EMIT (STAY ON SAME LINE) D ?TERMINAL
 UNTIL 23 EMIT (RESTORE CURSOR) QUIT ;

 : D (DISPLAY MSG & TIME ONCE)
 CR D QUIT ;

Figure J-2. 24-Hour Clock Program
Using an Interpretive Interrupt Handler (Cont'd)

J-6

APPENDIX K

UTILITY EXAMPLES

K.I MEASURING FORTH WORD EXECUTION TIME

It is often desired to know how long it takes for a FORTH word to execute,
especially in time critical applications. The follo wing words measure such
execution time in R65F11 or R65F12 clock cycles, i. e., microseconds.

 HEX
 : ON FF FF 1C C! IE C! ;
 : OFF 001C @ 12B + CR
 FFFF SWAP - 0 D. ;

The word ON initializes and starts Timer B. The wor d OFF displays the number of
cycles elapsed from the start of the timer minus ON and OFF word overhead. Use
these words as shown in the following colon-definit ion example to measure the
execution time of a FORTH word, in this case DUP .

 DECIMAL OK
 : TDUP ON DUP OFF ;
 OK
 TDUP 68 OK

Using this technique, the execution time of most FO RTH words defined using
colon- or CODE-definitions can be measured. Set up and run similar colon-
definition words as needed for your application.

Many problems can be programmed in FORTH using diff erent combinations of FORTH
words with differing resultant execution speed. If speed is important, measure
the execution time of each approach to decide which solution to use.

If the execution time of a FORTH word defined in hi gh level, i.e., colon-
definitions, is too long, redefine portions, or all , of the word in assembly
code, i.e., colon-definitions, then remeasure. Comp aring the execution time of
the word defined in assembly code versus FORTH will show the performance
improvement. For cases where the execution time exc eeds the 16-bit counter
capacity, other timing words can easily be defined to accumulate the time.

K-1

This page is intentionally left blank.

K-2

APPENDIX L

RSC-FORTH VERSUS FIG-FORTH

This table is a comparison of RSC-FORTH V1.6 and th e FIG-FORTH model from which
it is derived.

 a. Words in RSC-FORTH V1.6 that are not in FI G-FORTH 1.0:

 Word Name

 ,/ .S ;DUMP >LINE
 1- 2- 2DROP 2DUP
 4 ?KERNEL ADMP ALLOT/
 ASSEMBLER AUTOSTART B/SIDE BANKEEC!
 BANKC! BANKC@ BANKEXE CUTE BOUNDS
 C,CON C/L CASE: CLD/WRM
 CLIT CODE CURREN T CYLINDER
 DISK DISKNO DNEGAT E DP/
 DREAD DWRITE EEC! FINIS
 FLUSH FORMAT FMTRK H/C
 HEADERLESS HERE/ HWORD IER
 IFR INIT INTFLG INTVEC
 IRQVEC KHZ MCR MEMTOP
 NEGATE NMIVEC NOT PA
 PB PC PD PE
 PF PFAPTR PG PICK
 PR@ SCCR SCDR SCSR
 SEEK SELECT SOURCE U<
 UABORT UC/L UFIRST ULIMIT
 UPAD UR/W XOFF XON

L-1

b. The following words are in FIG-FORTH 1.0 but are not in RSC-FORTH V1.6
(however, some of the words are in the RSC-FORTH As sembler vocabulary):

 Word Name Where Used Comment

 +ORIGIN system
 ?LOADING system
 BACK system
 BLOCK-READ user disk word (DREAD)
 BLOCK-WRITE user disk word (DWRITE)
 DLIST duplicate name (VLIS T)
 DMINUS new name (DNEGA TE)
 DR0 disk
 DR1 disk
 FLD not used
 MINUS new name (NEGA TE)
 MOVE N/A (word addressing
 compu ters)
 NEXT RSC-FORTH Assembler
 OUT not used
 POP RSC-FORTH Assembler
 PUSH RSC-FORTH Assembler
 PUT RSC-FORTH Assembler
 R# system
 TRAVERSE system
 TRIAD disk
 X system (null)

L-2

APPENDIX M

FLOPPY DISK INTERFACE

The R65F11/R65F12 hardware interface is configured to directly interface with a
1793 type Floppy Disk Controller (FDC) device with minimal support circuitry
required. Figure M-1 shows the minimum external ci rcuitry (excluding chip
decode) required to connect the R65F11/R65F12 to th e 1793 and support circuits.

In addition, the RSC-FORTH operating system provide s the complementary software
interface. Figure M-2 shows the memory map of words (bytes) assigned to transfer
data and command/status between the R65F11/R65F12 a nd the 1793 FDC device. The
1793 Data, 1793 Sector, 1793 Track and 1793 Status/ Command bytes all conform to
the standard 1793 interface definitions. The bit d efinitions for the DRIVE STAT
(read, R/W=1) and DRIVE CTL (write, R/W=0) are show n in Figure M-3.

M-1

Figure M-1. R65F11/R65F12 Floppy Disk Controller I nterface

M-2

Figure M-2. Floppy Disk Controller Memory Map

Figure M-3. DRIVE STAT/DRIVE CTL Bit Definitions

M-3

This page is intentionally left blank.

M-4

APPENDIX N

RSC-FORTH SCREEN NUMBERS VERSUS TRACK NUMBERS

The RSC-FORTH disk operating system is designed to operate with up to four
double-sided, quad-density 5 1/2-inch or 3 1/2 inch disk drives (80-track).

This provides the capability for over 2.5 MB of on- line storage. Smaller disk
drives may still be used, however. The FORTH "SCRE EN" numbering scheme must be
considered for different size drives. When using sm aller drives, there will
appear to be "holes" in the "screen" numbers. For e xample, drive 1 normally
contains "screens" 640 through 1279. If a 40-track double-sided drive is
substituted, the "screens" will now range from 640 to 799 on side 0 and from 960
to 1119 on side 1. Figure N-1 shows the boundary s tarting screen numbers for
40- and 80-track disk drives.

N-1

Figure N-1. First Screen No. Versus Track No.

N-2

APPENDIX O

RSC-FORTH EDITOR

This appendix lists a FORTH Editor that will operat e with RSC-FORTH.

O-1

This page is intentionally left blank.

O-8

APPENDIX P SELECTED BIBLIOGRAPHY

Anderson, A. and Wasson, P. FORTH-79 Tutorial and R eference Manual, MicroMotion,
12077 Wilshire Blvd, Suite 506, West Los Angeles, C A, February 1981.

Bartoldi, P, "Stepwise Development and Debugging Us ing a Small Well-Structured Interactive
Language for Data Acquisition and Instrument Contro l," Proceedings of the International
Symposium and Course on Mini and Microcomputers and their Applications.

Brodie, L., "Starting FORTH", Prentice-Hall, Englew ood Cliffs, N.J., 1981.

Cassady, J. J., "Stacking Strings in FORTH", BYTE, February 1981, pages 152-162.

Deane, R., "A Proposal on Strings for FORTH", Dr. D obb's Journal of Computer Calisthenics &
Orthodontia, November/December 1980, pages 40-43.

Dessey, R. and M. K. Starling, "Forth Generation La nguages for Laboratory Applications",
American Laboratory, February 1980, pages 21-36.

Ewing, M, S., The Caltech FORTH Manual, California Institute of Technology, Pasadena CA,
1978.

Ewing, M. S., and W. H. Hammond, "The FORTH Program ming System," Proceedings of the Digital
Equipment Computer Users Society (DECUS), San Diego , CA, November 1974, page 477.

FORTH Interest Group, fig-FORTH Installation Manual , Glossary Model", May 1979, Box 1105,
San Carlos, CA, 94070.

FORTH Interest Group, "FORTH Dimensions" - a bimont hly newsletter, c/o FORTH Interest Group.

Harris, K., "FORTH Extensibility or How to Write a Compiler in 25 Words or Less", BYTE,
August 1980, pages 164 - 184.

Hicks, S. M., "FORTH's Forte is Tighter Programming ", Electronics, March 15, 1979, pages
115-118.

James, J. S., "FORTH for Micro Computers", Dr. Dobb 's Journal of Computer Calisthenics &
Orthodontia, May 1978; also in ACM SIGPLAN Notices, October 1978.

James, J. S., "What Is FORTH? A Tutorial Introducti on", BYTE, August 1980, pages 100-126.

Mannoni, M., "FORTH - An Extensible Path to Efficie nt Programs", Electronic Design, July
19, i960, pages 175-178.

P-1

Moore, C. H., "FORTH: a New Way to Program a Minico mputer", Astronomy
and Astrophysics Supplement, 1974, number 15, pages 497-511.

Phillips, J. B. "Threaded Code for Laboratory Compu ters", Software
Practice and Experience, Vol. 8, 1978, pages 257-26 3.

Rather, E. D., and C. H. Moore, "The FORTH Approach to Operating Systems",
ACM 1976 Proceedings, Association for Computing Mac hinery, 1976.

Rather, E. D., and C. H. Moore, and J. M. Hollis, " Basic Principles of
FORTH Language as Applied to a PDP-11 Computer", Co mputer Division
Internal Report No. 17, National Radio Astronomy Ob servatory,
Charlottesville, VA; Kitt Peak National Observatory , Tucson, AZ, March
1974.

P-2

